Variability of Kinetic Response Estimates of Froude Scaled DeepCwind Semisubmersible Platforms Subjected to Wave Loading

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme Pub Date : 2023-08-14 DOI:10.1115/1.4063180
A. Wisudawan, V. Jaksic, V. Pakrashi, Jimmy Murphy
{"title":"Variability of Kinetic Response Estimates of Froude Scaled DeepCwind Semisubmersible Platforms Subjected to Wave Loading","authors":"A. Wisudawan, V. Jaksic, V. Pakrashi, Jimmy Murphy","doi":"10.1115/1.4063180","DOIUrl":null,"url":null,"abstract":"\n Froude scaling for Floating Offshore Wind Turbine (FOWT) platforms is typical for understanding and interpreting their behavior and subsequent designs for testing in wave basins. Despite its popularity, the variability and uncertainty of the kinetic responses of such floating structures as a function of scaling require more attention. This work addresses the question of consistency of Froude scaling by comparing the hydrodynamic responses of a range of DeepCwind semi-submersible FOWT scaled models (full model, ½, ¼, 1/9, 1/16, 1/25, 1/36, 1/49 and 1/50). The comparation was made both in the mooring line tension and bending moment of structural members, which are directly related to their safety limit states. Hydrodynamic forces due to diffraction, radiation and viscosity along with hydrostatic forces and mooring boundaries are modeled by Ansys Aqwa, which were subsequently converted to bending moment estimates. The variability of kinetic responses like mooring line tensions and bending moment estimates was investigated for each scaled model, along with identification of regions of inconsistencies. In the context of offshore renewable energy development through technological readiness levels, the study is especially pertinent for understanding how force variabilities and uncertainties are related to these kinetic responses of semisubmersible platforms.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063180","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Froude scaling for Floating Offshore Wind Turbine (FOWT) platforms is typical for understanding and interpreting their behavior and subsequent designs for testing in wave basins. Despite its popularity, the variability and uncertainty of the kinetic responses of such floating structures as a function of scaling require more attention. This work addresses the question of consistency of Froude scaling by comparing the hydrodynamic responses of a range of DeepCwind semi-submersible FOWT scaled models (full model, ½, ¼, 1/9, 1/16, 1/25, 1/36, 1/49 and 1/50). The comparation was made both in the mooring line tension and bending moment of structural members, which are directly related to their safety limit states. Hydrodynamic forces due to diffraction, radiation and viscosity along with hydrostatic forces and mooring boundaries are modeled by Ansys Aqwa, which were subsequently converted to bending moment estimates. The variability of kinetic responses like mooring line tensions and bending moment estimates was investigated for each scaled model, along with identification of regions of inconsistencies. In the context of offshore renewable energy development through technological readiness levels, the study is especially pertinent for understanding how force variabilities and uncertainties are related to these kinetic responses of semisubmersible platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波浪载荷作用下弗劳德尺度深风半潜平台动力学响应估计的可变性
浮式海上风力涡轮机(FOWT)平台的弗劳德尺度是理解和解释其行为以及随后在波盆中测试的设计的典型方法。尽管它很受欢迎,但这种浮动结构的动力学响应的可变性和不确定性作为尺度的函数需要更多的关注。本研究通过比较一系列DeepCwind半潜式FOWT比例模型(全模型、1/2、1/4、1/9、1/16、1/25、1/36、1/49和1/50)的水动力响应,解决了Froude比例的一致性问题。对直接关系到结构构件安全极限状态的系缆拉力和弯矩进行了比较。由衍射、辐射和黏度引起的水动力以及水静力和系泊边界由Ansys Aqwa建模,然后将其转换为弯矩估计。研究了每个模型的动力学响应的可变性,如系泊线张力和弯矩估计,并确定了不一致的区域。在海上可再生能源开发的背景下,通过技术成熟度水平,该研究特别适用于了解半潜式平台的这些动力学响应与力的可变性和不确定性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
期刊最新文献
PEridynamic Analysis of Tubular Joints of Offshore Jacket Structure Underwater impulsive response of sandwich structure with multilayer foam core Numerical Study on the Automatic Ballast Control of a Floating Dock Gravity wave interaction with a composite pile-rock breakwater Modelling Green Water Load on A Deck Mounted Circular Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1