Alexandra Weber, Stefanie Wolf, Nadine Becker, Leonie Märker-Neuhaus, Piero Bellanova, Catrina Brüll, Henner Hollert, Elena-Maria Klopries, Holger Schüttrumpf, Frank Lehmkuhl
{"title":"The risk may not be limited to flooding: polluted flood sediments pose a human health threat to the unaware public","authors":"Alexandra Weber, Stefanie Wolf, Nadine Becker, Leonie Märker-Neuhaus, Piero Bellanova, Catrina Brüll, Henner Hollert, Elena-Maria Klopries, Holger Schüttrumpf, Frank Lehmkuhl","doi":"10.1186/s12302-023-00765-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Because of global climate change, extreme flood events are expected to increase in quantity and intensity in the upcoming decades. In catchments affected by ore mining, flooding leads to the deposition of fine sediments enriched in trace metal(loid)s. Depending on their concentration, trace metal(loid)s can be a health hazard. Therefore, exposure of the local population to flood sediments, either by ingestion (covering direct ingestion and consuming food grown on these sediments) or via inhalation of dried sediments contributing to atmospheric particulate matter, is of concern.</p><h3>Results</h3><p>The extreme flood of July 2021 deposited large amounts of sediment across the town of Eschweiler (western Germany), with the inundation area exceeding previously mapped extreme flood limits (HQ<sub>extreme</sub>). These sediments are rich in fine material (with the < 63 µm fraction making up 32% to 96%), which either can stick to the skin and be ingested or inhaled. They are moderately to heavily enriched in Zn > Cu > Pb > Cd > Sn compared to local background concentrations. The concentrations of Zn, Pb, Cd, Cu, and As in flood sediments exceed international trigger action values. A simple assessment of inhalation and ingestion by humans reveals that the tolerable daily intake is exceeded for Pb. Despite the enrichment of other trace elements like Zn, Cu, Cd, and Sn, they presumably do not pose a risk to human well-being. However, exposure to high dust concentrations may be a health risk.</p><h3>Conclusions</h3><p>In conclusion, flood sediments, especially in catchments impacted by mining, may pose a risk to the affected public. Hence, we propose to (I) improve the flood mapping by incorporating potential pollution sources; (II) extend warning messages to incorporate specific guidance; (III) use appropriate clean-up strategies in the aftermath of such flooding events; (IV) provide medical support, and (V) clue the public and medical professionals in on this topic accordingly.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00765-w","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00765-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2
Abstract
Background
Because of global climate change, extreme flood events are expected to increase in quantity and intensity in the upcoming decades. In catchments affected by ore mining, flooding leads to the deposition of fine sediments enriched in trace metal(loid)s. Depending on their concentration, trace metal(loid)s can be a health hazard. Therefore, exposure of the local population to flood sediments, either by ingestion (covering direct ingestion and consuming food grown on these sediments) or via inhalation of dried sediments contributing to atmospheric particulate matter, is of concern.
Results
The extreme flood of July 2021 deposited large amounts of sediment across the town of Eschweiler (western Germany), with the inundation area exceeding previously mapped extreme flood limits (HQextreme). These sediments are rich in fine material (with the < 63 µm fraction making up 32% to 96%), which either can stick to the skin and be ingested or inhaled. They are moderately to heavily enriched in Zn > Cu > Pb > Cd > Sn compared to local background concentrations. The concentrations of Zn, Pb, Cd, Cu, and As in flood sediments exceed international trigger action values. A simple assessment of inhalation and ingestion by humans reveals that the tolerable daily intake is exceeded for Pb. Despite the enrichment of other trace elements like Zn, Cu, Cd, and Sn, they presumably do not pose a risk to human well-being. However, exposure to high dust concentrations may be a health risk.
Conclusions
In conclusion, flood sediments, especially in catchments impacted by mining, may pose a risk to the affected public. Hence, we propose to (I) improve the flood mapping by incorporating potential pollution sources; (II) extend warning messages to incorporate specific guidance; (III) use appropriate clean-up strategies in the aftermath of such flooding events; (IV) provide medical support, and (V) clue the public and medical professionals in on this topic accordingly.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.