Jeeva P A, K. S, R. D, VamshiKrishna Reddy K, P. B., N. S
{"title":"An Investigation on Laser shot peened surfaces","authors":"Jeeva P A, K. S, R. D, VamshiKrishna Reddy K, P. B., N. S","doi":"10.22201/icat.24486736e.2022.20.5.1375","DOIUrl":null,"url":null,"abstract":"The present work is focused on the influence of zinc trivalent plating on laser shot peened AISI 304 stainless steel samples to improve the corrosion resistance of the steel surface. AISI 304 steel samples were heat treated by annealing and polished to perform Laser Shot Peening (LSP) process using Nd-YAG laser functioning at a pulse interval of 10ns with different energies of 200 mJ, 300 mJ and 400 mJ on each sample. The highest magnitude of compressive residual stresses is induced using the pulse density of 2500 pulses/cm2. The laser treated sample was characterized by surface hardness using Vickers micro hardness test and surface morphology using an optical microscope and SEM analysis. The surface hardness of the sample is increased by increasing laser energy. The prepared zinc trivalent is plated using electro deposition on the laser treated surface by maintaining current between 1.5 to 4 amps/Dm2, and temperature between 20 to 40 deg C. MAHR’s roughness tests were performed to find the surface roughness of the sample. The surface roughness has drastically increased on zinc coated samples compared to samples without coating. The Vickers micro hardness test conducted on zinc trivalent plated sample revealed the increase in hardness value of 200mJ by 24% compared with 200mJ sample without coating. SEM and EDAX were carried out to know the changes occurred in the chemical composition of the samples before and after coating.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2022.20.5.1375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The present work is focused on the influence of zinc trivalent plating on laser shot peened AISI 304 stainless steel samples to improve the corrosion resistance of the steel surface. AISI 304 steel samples were heat treated by annealing and polished to perform Laser Shot Peening (LSP) process using Nd-YAG laser functioning at a pulse interval of 10ns with different energies of 200 mJ, 300 mJ and 400 mJ on each sample. The highest magnitude of compressive residual stresses is induced using the pulse density of 2500 pulses/cm2. The laser treated sample was characterized by surface hardness using Vickers micro hardness test and surface morphology using an optical microscope and SEM analysis. The surface hardness of the sample is increased by increasing laser energy. The prepared zinc trivalent is plated using electro deposition on the laser treated surface by maintaining current between 1.5 to 4 amps/Dm2, and temperature between 20 to 40 deg C. MAHR’s roughness tests were performed to find the surface roughness of the sample. The surface roughness has drastically increased on zinc coated samples compared to samples without coating. The Vickers micro hardness test conducted on zinc trivalent plated sample revealed the increase in hardness value of 200mJ by 24% compared with 200mJ sample without coating. SEM and EDAX were carried out to know the changes occurred in the chemical composition of the samples before and after coating.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.