Ricardo M. Holdo, Jason E. Donaldson, Deusdedith M. Rugemalila, T. Michael Anderson
{"title":"Sapling growth gradients interact with homogeneous disturbance regimes to explain savanna tree cover discontinuities","authors":"Ricardo M. Holdo, Jason E. Donaldson, Deusdedith M. Rugemalila, T. Michael Anderson","doi":"10.1002/ecm.1514","DOIUrl":null,"url":null,"abstract":"<p>Savanna tree cover often exhibits sudden discontinuities across space. It has been proposed that local spatial processes imposed by variation in tree cover itself (as opposed to by external drivers such as edaphic variation) can reinforce such discontinuities. Despite this, we generally lack data on tree demography and the environmental drivers affecting the former as a function of tree neighborhoods in these systems. Given the importance of disturbance traps in savannas, spatial processes affecting the likelihood of escape from the seedling/sapling stage to the adult tree stage are likely to be critical. In a longitudinal survey of 800 saplings distributed along eight 1-km transects spanning woodland–grassland transitions in Serengeti National Park, we found a positive association between tree cover and sapling growth and survival, but no relationship with sapling abundance, maximum tree height, disturbance, or topkill. Based on microclimate and soil moisture dynamics data, we found no evidence to suggest that tree cover itself drives variation in growth. Based on a prior analysis of soil properties along these transects, we hypothesized that underlying edaphic conditions may be responsible for variation in growth. Regardless of the underlying mechanism, we used simulations to show that subtle growth rate gradients interacted with intense disturbance regimes to produce sharp discontinuities in tree cover, with strong demographic bottlenecks where growth is slowest, explaining the observed patterns of tree cover along the transects. Our results indicated that disturbance and herbivory are equally intense in areas of high and low tree cover, and that although trees have the potential to successfully establish and reach adulthood in open, grassy sites, they grow too slowly to escape disturbance traps there. Importantly, we showed that although herbivory and fire are fundamental for explaining savanna structural patterns, their effects are not necessarily reinforced by tree cover itself.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1514","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Savanna tree cover often exhibits sudden discontinuities across space. It has been proposed that local spatial processes imposed by variation in tree cover itself (as opposed to by external drivers such as edaphic variation) can reinforce such discontinuities. Despite this, we generally lack data on tree demography and the environmental drivers affecting the former as a function of tree neighborhoods in these systems. Given the importance of disturbance traps in savannas, spatial processes affecting the likelihood of escape from the seedling/sapling stage to the adult tree stage are likely to be critical. In a longitudinal survey of 800 saplings distributed along eight 1-km transects spanning woodland–grassland transitions in Serengeti National Park, we found a positive association between tree cover and sapling growth and survival, but no relationship with sapling abundance, maximum tree height, disturbance, or topkill. Based on microclimate and soil moisture dynamics data, we found no evidence to suggest that tree cover itself drives variation in growth. Based on a prior analysis of soil properties along these transects, we hypothesized that underlying edaphic conditions may be responsible for variation in growth. Regardless of the underlying mechanism, we used simulations to show that subtle growth rate gradients interacted with intense disturbance regimes to produce sharp discontinuities in tree cover, with strong demographic bottlenecks where growth is slowest, explaining the observed patterns of tree cover along the transects. Our results indicated that disturbance and herbivory are equally intense in areas of high and low tree cover, and that although trees have the potential to successfully establish and reach adulthood in open, grassy sites, they grow too slowly to escape disturbance traps there. Importantly, we showed that although herbivory and fire are fundamental for explaining savanna structural patterns, their effects are not necessarily reinforced by tree cover itself.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.