Machine learning and complex compositional principles in architecture: Application of convolutional neural networks for generation of context-dependent spatial compositions

Tomasz Dzieduszyński
{"title":"Machine learning and complex compositional principles in architecture: Application of convolutional neural networks for generation of context-dependent spatial compositions","authors":"Tomasz Dzieduszyński","doi":"10.1177/14780771211066877","DOIUrl":null,"url":null,"abstract":"A substantial part of architectural and urban design involves processing of compositional interdependencies and contexts. This article attempts to isolate the problem of spatial composition from the broader category of synthetic image processing. The capacity of deep convolutional neural networks for recognition and utilization of complex compositional principles has been demonstrated and evaluated under three scenarios varying in scope and approach. The proposed method reaches 95.1%–98.5% efficiency in the generation of context-fitting spatial composition. The technique can be applied for the extraction of compositional principles from the architectural, urban, or artistic contexts and may facilitate the design-related decision making by complementing the required expert analysis.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"20 1","pages":"196 - 215"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771211066877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

A substantial part of architectural and urban design involves processing of compositional interdependencies and contexts. This article attempts to isolate the problem of spatial composition from the broader category of synthetic image processing. The capacity of deep convolutional neural networks for recognition and utilization of complex compositional principles has been demonstrated and evaluated under three scenarios varying in scope and approach. The proposed method reaches 95.1%–98.5% efficiency in the generation of context-fitting spatial composition. The technique can be applied for the extraction of compositional principles from the architectural, urban, or artistic contexts and may facilitate the design-related decision making by complementing the required expert analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习和建筑中的复杂组成原理:卷积神经网络在生成上下文相关空间组成中的应用
建筑和城市设计的很大一部分涉及到组成相互依存关系和背景的处理。本文试图将空间合成问题从更广泛的合成图像处理类别中分离出来。深度卷积神经网络识别和利用复杂组成原理的能力已经在三种不同范围和方法的场景下得到了证明和评估。所提出的方法在生成上下文拟合的空间合成方面达到了95.1%-98.5%的效率。该技术可用于从建筑、城市或艺术背景中提取构图原则,并可通过补充所需的专家分析来促进设计相关决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
17.60%
发文量
44
期刊最新文献
Encapsulating creative collaborations: A case study in the design of cement tiles RO-BIK—A robotic approach to developing dynamic architecture A convolutional neural network approach to classifying urban spaces using generative tools for data augmentation Reclaiming site analysis from co-sensing to co-ideation: A collective cartography strategy and tactical trajectories Interpreting a virtual reconstruction from different levels of detail: 3D modeling approaches combined with a phenomenological exploratory study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1