LES prediction of transitional flows in LP turbine cascades: effects of blade loading, flow phenomena and numerical setup

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2022-12-20 DOI:10.33737/jgpps/156577
A. Tateishi, N. Tani, Y. Okamura, Masaaki Hamabe
{"title":"LES prediction of transitional flows in LP turbine cascades: effects of blade loading, flow phenomena and numerical setup","authors":"A. Tateishi, N. Tani, Y. Okamura, Masaaki Hamabe","doi":"10.33737/jgpps/156577","DOIUrl":null,"url":null,"abstract":"This paper presents detailed validations of a Large Eddy Simulation (LES) methodology for various transitional phenomena in low pressure turbines. The results are discussed to identify key phenomena to be resolved accurately toward future industrial use of LES. Detailed comparisons between experimental and CFD results are made on three different 2D cascades with different blade loading. One is low-lift and fully laminar design, while the others are moderate- and high-lift designs with boundary layer transition. The experimental data are obtained in a low speed linear cascade at Iwate University. All computations are conducted by a carefully-designed overset LES code. For the high-load design with a distinct laminar separation on the suction side, the LES result shows satisfactory agreement with the test. However, although the peak of total pressure loss distribution is predicted quite accurately, integrated cascade losses are over-predicted in the other two cases. For the laminar blade, the LES result implies some differences can exist in the state of wake, while the transitional blade shows delay of transition in the boundary layer. The effects of inflow turbulence intensity, length scale, and stream tube contraction are discussed in detail to improve LES prediction.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/156577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents detailed validations of a Large Eddy Simulation (LES) methodology for various transitional phenomena in low pressure turbines. The results are discussed to identify key phenomena to be resolved accurately toward future industrial use of LES. Detailed comparisons between experimental and CFD results are made on three different 2D cascades with different blade loading. One is low-lift and fully laminar design, while the others are moderate- and high-lift designs with boundary layer transition. The experimental data are obtained in a low speed linear cascade at Iwate University. All computations are conducted by a carefully-designed overset LES code. For the high-load design with a distinct laminar separation on the suction side, the LES result shows satisfactory agreement with the test. However, although the peak of total pressure loss distribution is predicted quite accurately, integrated cascade losses are over-predicted in the other two cases. For the laminar blade, the LES result implies some differences can exist in the state of wake, while the transitional blade shows delay of transition in the boundary layer. The effects of inflow turbulence intensity, length scale, and stream tube contraction are discussed in detail to improve LES prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低压涡轮叶栅过渡流动的LES预测:叶片载荷、流动现象和数值设置的影响
本文详细验证了低压涡轮机中各种过渡现象的大涡模拟(LES)方法。对结果进行了讨论,以确定LES未来工业应用中需要准确解决的关键现象。对三种不同叶片载荷的二维叶栅进行了实验结果和CFD结果的详细比较。一种是低升力和全层流设计,而另一种是具有边界层过渡的中升力和高升力设计。实验数据是在岩手大学的低速线性叶栅中获得的。所有计算都是通过精心设计的过集LES代码进行的。对于吸力面有明显层流分离的高负荷设计,LES结果与试验结果吻合良好。然而,尽管总压损失分布的峰值预测得相当准确,但在其他两种情况下,综合叶栅损失的预测过高。对于层流叶片,LES结果表明,尾流状态可能存在一些差异,而过渡叶片在边界层显示出过渡延迟。详细讨论了入流湍流强度、长度尺度和流管收缩的影响,以改进LES预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1