Empirical likelihood inference in autoregressive models with time-varying variances

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-04-22 DOI:10.1080/24754269.2021.1913977
Yu Han, Chunming Zhang
{"title":"Empirical likelihood inference in autoregressive models with time-varying variances","authors":"Yu Han, Chunming Zhang","doi":"10.1080/24754269.2021.1913977","DOIUrl":null,"url":null,"abstract":"This paper develops the empirical likelihood ( ) inference procedure for parameters in autoregressive models with the error variances scaled by an unknown nonparametric time-varying function. Compared with existing methods based on non-parametric and semi-parametric estimation, the proposed test statistic avoids estimating the variance function, while maintaining the asymptotic chi-square distribution under the null. Simulation studies demonstrate that the proposed procedure (a) is more stable, i.e., depending less on the change points in the error variances, and (b) gets closer to the desired confidence level, than the traditional test statistic.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"129 - 138"},"PeriodicalIF":0.7000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1913977","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1913977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops the empirical likelihood ( ) inference procedure for parameters in autoregressive models with the error variances scaled by an unknown nonparametric time-varying function. Compared with existing methods based on non-parametric and semi-parametric estimation, the proposed test statistic avoids estimating the variance function, while maintaining the asymptotic chi-square distribution under the null. Simulation studies demonstrate that the proposed procedure (a) is more stable, i.e., depending less on the change points in the error variances, and (b) gets closer to the desired confidence level, than the traditional test statistic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变方差自回归模型中的经验似然推理
本文发展了误差方差由未知非参数时变函数缩放的自回归模型中参数的经验似然推理过程。与现有的基于非参数和半参数估计的方法相比,所提出的检验统计量避免了对方差函数的估计,同时保持了零下的渐近卡方分布。仿真研究表明,与传统的测试统计相比,所提出的程序(a)更稳定,即更少地依赖于误差方差的变化点,并且(b)更接近所需的置信水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1