Time-Based Compute-in-Memory for Cryogenic Neural Network With Successive Approximation Register Time-to-Digital Converter

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-11-29 DOI:10.1109/JXCDC.2022.3225243
Dong Suk Kang;Shimeng Yu
{"title":"Time-Based Compute-in-Memory for Cryogenic Neural Network With Successive Approximation Register Time-to-Digital Converter","authors":"Dong Suk Kang;Shimeng Yu","doi":"10.1109/JXCDC.2022.3225243","DOIUrl":null,"url":null,"abstract":"This article explores a compute-in-memory (CIM) paradigm’s new application for cryogenic neural network. Using the 28-nm cryogenic transistor model calibrated at 4 K, the time-based CIM macro comprised of the following: 1) area-efficient unit delay cell design for cryogenic operation and 2) area and power efficient, and a high-resolution achievable successive approximation register (SAR) time-to-digital converter (TDC) is proposed. The benchmark simulation first shows that the proposed macro has better latency than the current-based CIM counterpart. Next, the simulation further shows that it has better scalability for a larger size decoder design and process technology optimization.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"128-133"},"PeriodicalIF":2.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/09966349.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9966349/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

This article explores a compute-in-memory (CIM) paradigm’s new application for cryogenic neural network. Using the 28-nm cryogenic transistor model calibrated at 4 K, the time-based CIM macro comprised of the following: 1) area-efficient unit delay cell design for cryogenic operation and 2) area and power efficient, and a high-resolution achievable successive approximation register (SAR) time-to-digital converter (TDC) is proposed. The benchmark simulation first shows that the proposed macro has better latency than the current-based CIM counterpart. Next, the simulation further shows that it has better scalability for a larger size decoder design and process technology optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逐次逼近寄存器时间-数字转换器低温神经网络中基于时间的内存计算
本文探讨了内存计算(CIM)范式在低温神经网络中的新应用。使用在4K下校准的28nm低温晶体管模型,提出了基于时间的CIM宏,该宏包括以下内容:1)用于低温操作的面积有效单位延迟单元设计,2)面积和功率有效,以及高分辨率可实现逐次逼近寄存器(SAR)时间-数字转换器(TDC)。基准测试仿真首先表明,所提出的宏比基于当前CIM的宏具有更好的延迟。接下来,仿真进一步表明,它对于更大尺寸的解码器设计和处理技术优化具有更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Co-Optimization of Power Delivery Network Design for 3-D Heterogeneous Integration of RRAM-Based Compute In-Memory Accelerators 2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 Front Cover Table of Contents INFORMATION FOR AUTHORS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1