Spot weld bonding − process behavior of three-sheet steel stack‑ups and analysis strategies with online measuring methods

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2020-12-01 DOI:10.1051/mfreview/2019029
S. Brechelt, P. Neef, H. Wiche, V. Wesling
{"title":"Spot weld bonding − process behavior of three-sheet steel stack‑ups and analysis strategies with online measuring methods","authors":"S. Brechelt, P. Neef, H. Wiche, V. Wesling","doi":"10.1051/mfreview/2019029","DOIUrl":null,"url":null,"abstract":"Due to the increased demands for reducing CO2 emissions, improving fuel efficiency of modern vehicles has been continuously monitored. The body of a typical compact car design has a weight share of approx. 40%. In addition to increasing torsional stiffness and crash safety of the body, the aim is also to reduce the overall weight at the same time. In order to achieve these individual requirements, the use of three-sheet steel stack-ups with adhesive applications for car body construction is one of the current strategies used in automobile manufacturing. Adhesive applications lead to a change in process behavior of resistance spot welding. The effective weldability lobe is reduced and an adjusted preheat current is necessary to reconstitute the weldability of a component. Depending on squeeze time and electrode force the adhesive will be displaced. For an asymmetric sheet stack-up, the electrical resistance for every faying surface is highly differentiated. During welding, a specific characteristic of the electrical resistance is created for each individual material combination. These characteristics can be analyzed by using an online measurement device. In this manuscript, different sheet stack-ups are examined with regard to their weldability lobes and their process behavior. The individual three-sheet steel stack-ups used are made of low carbon steel (DX51), HSLA-steel (HX340) and UHS-steel (22MnB5). The corresponding characteristics of electrical resistance will be recorded by using an online measurement device. In addition, the process of adhesive displacement during the squeeze time and the initial welding current are discussed on the basis of the electrical energy generated in the component to be welded. The obtained results contribute to a direct verification of the welding process and an automatic detection of possible imperfect welds.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2019029","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2019029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the increased demands for reducing CO2 emissions, improving fuel efficiency of modern vehicles has been continuously monitored. The body of a typical compact car design has a weight share of approx. 40%. In addition to increasing torsional stiffness and crash safety of the body, the aim is also to reduce the overall weight at the same time. In order to achieve these individual requirements, the use of three-sheet steel stack-ups with adhesive applications for car body construction is one of the current strategies used in automobile manufacturing. Adhesive applications lead to a change in process behavior of resistance spot welding. The effective weldability lobe is reduced and an adjusted preheat current is necessary to reconstitute the weldability of a component. Depending on squeeze time and electrode force the adhesive will be displaced. For an asymmetric sheet stack-up, the electrical resistance for every faying surface is highly differentiated. During welding, a specific characteristic of the electrical resistance is created for each individual material combination. These characteristics can be analyzed by using an online measurement device. In this manuscript, different sheet stack-ups are examined with regard to their weldability lobes and their process behavior. The individual three-sheet steel stack-ups used are made of low carbon steel (DX51), HSLA-steel (HX340) and UHS-steel (22MnB5). The corresponding characteristics of electrical resistance will be recorded by using an online measurement device. In addition, the process of adhesive displacement during the squeeze time and the initial welding current are discussed on the basis of the electrical energy generated in the component to be welded. The obtained results contribute to a direct verification of the welding process and an automatic detection of possible imperfect welds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三种叠层钢板点焊工艺行为及在线测量分析策略
由于对减少二氧化碳排放的需求不断增加,现代汽车燃油效率的提高一直受到监测。典型紧凑型轿车的车身重量约占40%。除了增加车身的扭转刚度和碰撞安全性外,其目的还在于同时降低整体重量。为了实现这些单独的要求,在车身结构中使用带有粘合剂的三片钢叠层是当前汽车制造中使用的策略之一。粘合剂的应用导致电阻点焊过程行为的改变。有效的可焊性波瓣减少,并且需要调整预热电流来重建部件的可焊接性。根据挤压时间和电极力的不同,粘合剂会发生位移。对于非对称的薄片堆叠,每个接合表面的电阻是高度不同的。在焊接过程中,每个单独的材料组合都会产生特定的电阻特性。这些特性可以通过使用在线测量设备来分析。在这篇手稿中,对不同的叠片进行了可焊性凸起和工艺行为的检查。所使用的单个三片钢叠层由低碳钢(DX51)、HSLA钢(HX340)和UHS钢(22MnB5)制成。电阻的相应特性将通过使用在线测量设备进行记录。此外,基于待焊接部件中产生的电能,讨论了挤压时间内粘合剂位移的过程和初始焊接电流。所获得的结果有助于直接验证焊接过程和自动检测可能的不完美焊缝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1