{"title":"A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy","authors":"G. Prasad, R. Kamath C., V. G.S.","doi":"10.1051/mfreview/2023009","DOIUrl":null,"url":null,"abstract":"Superalloys have gained prominence in recent years in various sectors, namely, spacecraft, marine, power, defense, vehicular and others, due to their ability to withstand high temperatures of up to 980 °C without deformation. Nimonics are Nickel-based superalloys usually known to be hard-to-machine materials due to their high strength at high temperatures, higher hardness, low thermal conductivity, and tendency to react with tool material. All these factors increase the level of difficulties in the machining of Nimonic superalloys. Numerous studies have examined various facets of machining of Nimonic alloys. This article summarizes the observation from 152 research articles to offer a reasonable engineering overview of the study of Nimonic alloys. An overview of Nimonic superalloys and their applications is given first. Then, various conventional and non-conventional machining processes, problems associated with multiple machining processes and methods to rectify the issues concerning the machining process have been reported. Thus, this summary will certainly help industrialists and academic researchers for further research work in machining Nimonic alloys.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2023009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Superalloys have gained prominence in recent years in various sectors, namely, spacecraft, marine, power, defense, vehicular and others, due to their ability to withstand high temperatures of up to 980 °C without deformation. Nimonics are Nickel-based superalloys usually known to be hard-to-machine materials due to their high strength at high temperatures, higher hardness, low thermal conductivity, and tendency to react with tool material. All these factors increase the level of difficulties in the machining of Nimonic superalloys. Numerous studies have examined various facets of machining of Nimonic alloys. This article summarizes the observation from 152 research articles to offer a reasonable engineering overview of the study of Nimonic alloys. An overview of Nimonic superalloys and their applications is given first. Then, various conventional and non-conventional machining processes, problems associated with multiple machining processes and methods to rectify the issues concerning the machining process have been reported. Thus, this summary will certainly help industrialists and academic researchers for further research work in machining Nimonic alloys.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.