{"title":"Window analysis and MPI for efficiency and productivity assessment under fuzzy data","authors":"Window Analysis, Mpi","doi":"10.4018/ijmmme.299058","DOIUrl":null,"url":null,"abstract":"This research develops a procedure for DEA window analysis and MPI evaluation of a manufacturing process with fuzzy inputs and outputs. A real case study was provided to illustrate relative efficiency and MPI assessment of a blowing machine over a period of one a year. The proposed approach was implemented to measure the technical, pure technical, and scale efficiency scores for decision making unit. The results showed that the blowing process was technically inefficient due to scale inefficiency. Therefore, management should optimize the size of operations and better utilize resources. Then, the lower and upper MPI values and their corresponding technology change and efficiency change were calculated. The MPI results revealed the reasons behind MPI progress or regress in current period measured with respect to next period. This procedure provides great assistance to process engineering in obtaining reliable feedback on process performance and guide them to take proper actions.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmmme.299058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
This research develops a procedure for DEA window analysis and MPI evaluation of a manufacturing process with fuzzy inputs and outputs. A real case study was provided to illustrate relative efficiency and MPI assessment of a blowing machine over a period of one a year. The proposed approach was implemented to measure the technical, pure technical, and scale efficiency scores for decision making unit. The results showed that the blowing process was technically inefficient due to scale inefficiency. Therefore, management should optimize the size of operations and better utilize resources. Then, the lower and upper MPI values and their corresponding technology change and efficiency change were calculated. The MPI results revealed the reasons behind MPI progress or regress in current period measured with respect to next period. This procedure provides great assistance to process engineering in obtaining reliable feedback on process performance and guide them to take proper actions.