Discussion of ‘On studying extreme values and systematic risks with nonlinear time series models and tail dependence measures’

IF 1.3 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-01-02 DOI:10.1080/24754269.2020.1862587
Ting Zhang
{"title":"Discussion of ‘On studying extreme values and systematic risks with nonlinear time series models and tail dependence measures’","authors":"Ting Zhang","doi":"10.1080/24754269.2020.1862587","DOIUrl":null,"url":null,"abstract":"I congratulate and thank the author for providing a systematic and thorough review of both classical approaches and modern developments on the modelling of extremal events and tail dependence in th...","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"35 - 36"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2020.1862587","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2020.1862587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

I congratulate and thank the author for providing a systematic and thorough review of both classical approaches and modern developments on the modelling of extremal events and tail dependence in th...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于“用非线性时间序列模型和尾部相关测度研究极值与系统风险”的讨论
我祝贺并感谢作者对极端事件和尾部依赖模型的经典方法和现代发展进行了系统而彻底的回顾。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1