{"title":"NiCo2O4@V2O5 nanobelts as electrode materials for efficient electrochemical charge storage","authors":"D. K. Mohapatra, M. Sahoo, S. Praharaj, D. Rout","doi":"10.1088/2399-1984/ac9d12","DOIUrl":null,"url":null,"abstract":"The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ac9d12","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.