S. Köse, Fatima Aerts Kaya, B. Kuşkonmaz, Duygu Uçkan Çetinkaya
{"title":"Characterization of mesenchymal stem cells in mucolipidosis type II (I-cell disease)","authors":"S. Köse, Fatima Aerts Kaya, B. Kuşkonmaz, Duygu Uçkan Çetinkaya","doi":"10.3906/biy-1902-20","DOIUrl":null,"url":null,"abstract":"Mucolipidosis type II (ML-II, I-cell disease) is a fatal inherited lysosomal storage disease caused by a deficiency of the enzyme N-acetylglucosamine-1-phosphotransferase. A characteristic skeletal phenotype is one of the many clinical manifestations of ML-II. Since the mechanisms underlying these skeletal defects in ML-II are not completely understood, we hypothesized that a defect in osteogenic differentiation of ML-II bone marrow mesenchymal stem cells (BM-MSCs) might be responsible for this skeletal phenotype. Here, we assessed and characterized the cellular phenotype of BM-MSCs from a ML-II patient before (BBMT) and after BM transplantation (ABMT), and we compared the results with BM-MSCs from a carrier and a healthy donor. Morphologically, we did not observe differences in ML-II BBMT and ABMT or carrier MSCs in terms of size or granularity. Osteogenic differentiation was not markedly affected by disease or carrier status. Adipogenic differentiation was increased in BBMT ML-II MSCs, but chondrogenic differentiation was decreased in both BBMT and ABMT ML-II MSCs. Immunophenotypically no significant differences were observed between the samples. Interestingly, the proliferative capacity of BBMT and ABMT ML-II MSCs was increased in comparison to MSCs from age-matched healthy donors. These data suggest that MSCs are not likely to cause the skeletal phenotype observed in ML-II, but they may contribute to the pathogenesis of ML-II as a result of lysosomal storage-induced pathology.","PeriodicalId":23358,"journal":{"name":"Turkish Journal of Biology","volume":"43 1","pages":"171 - 178"},"PeriodicalIF":1.1000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/biy-1902-20","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3906/biy-1902-20","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Mucolipidosis type II (ML-II, I-cell disease) is a fatal inherited lysosomal storage disease caused by a deficiency of the enzyme N-acetylglucosamine-1-phosphotransferase. A characteristic skeletal phenotype is one of the many clinical manifestations of ML-II. Since the mechanisms underlying these skeletal defects in ML-II are not completely understood, we hypothesized that a defect in osteogenic differentiation of ML-II bone marrow mesenchymal stem cells (BM-MSCs) might be responsible for this skeletal phenotype. Here, we assessed and characterized the cellular phenotype of BM-MSCs from a ML-II patient before (BBMT) and after BM transplantation (ABMT), and we compared the results with BM-MSCs from a carrier and a healthy donor. Morphologically, we did not observe differences in ML-II BBMT and ABMT or carrier MSCs in terms of size or granularity. Osteogenic differentiation was not markedly affected by disease or carrier status. Adipogenic differentiation was increased in BBMT ML-II MSCs, but chondrogenic differentiation was decreased in both BBMT and ABMT ML-II MSCs. Immunophenotypically no significant differences were observed between the samples. Interestingly, the proliferative capacity of BBMT and ABMT ML-II MSCs was increased in comparison to MSCs from age-matched healthy donors. These data suggest that MSCs are not likely to cause the skeletal phenotype observed in ML-II, but they may contribute to the pathogenesis of ML-II as a result of lysosomal storage-induced pathology.
期刊介绍:
The Turkish Journal of Biology is published electronically 6 times a year by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts concerning all kinds of biological
processes including biochemistry and biosynthesis, physiology and metabolism, molecular genetics, molecular biology,
genomics, proteomics, molecular farming, biotechnology/genetic transformation, nanobiotechnology, bioinformatics
and systems biology, cell and developmental biology, stem cell biology, and reproductive biology. Contribution is open
to researchers of all nationalities.