Investigating the variation in the optical properties of TiO2 thin-film utilized in bifacial solar cells using machine learning algorithm

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Photonics for Energy Pub Date : 2022-02-12 DOI:10.1117/1.JPE.12.022202
S. Abdellatif, Ahmad Fathi, Kareem Abdullah, M. M. Hassan, Ziad Khalifa
{"title":"Investigating the variation in the optical properties of TiO2 thin-film utilized in bifacial solar cells using machine learning algorithm","authors":"S. Abdellatif, Ahmad Fathi, Kareem Abdullah, M. M. Hassan, Ziad Khalifa","doi":"10.1117/1.JPE.12.022202","DOIUrl":null,"url":null,"abstract":"Abstract. Among various solar cell architectures, dye-sensitized solar cells (DSSCs) and perovskite solar cells have demonstrated the capability of being bifacial as both can be fabricated on conducting glass electrodes. In both cells, TiO2 plays a key role in the optoelectronic properties of the cell. Various studies have reported a range of recipes and deposition techniques for TiO2 thin films. Such variety introduces some uncertainties into the optical properties of the prepared films as well as in the process repeatability. Here, we utilized machine learning methods to correlate the film porosity to the film refractive index, making it capable of studying the impact of varying the fabrication and deposition techniques. Image postprocessing for scanning electron microscope measurements was utilized to estimate the film porosity, and the refractive index was calculated from the T–λ spectra. Four sets of samples with complete bifacial DSSCs were fabricated and characterized. They recorded a maximum current of 23.42 mA. They were fabricated using carboxymethyl cellulose-based suspension and deposited via the spin-coating sol-gel method. The fabricated cells showed an overall conversion efficiency of 7.9% under optical injection of the AM1.5G spectrum from the front side and LED indoor lighting from the counter electrode.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"022202 - 022202"},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.022202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract. Among various solar cell architectures, dye-sensitized solar cells (DSSCs) and perovskite solar cells have demonstrated the capability of being bifacial as both can be fabricated on conducting glass electrodes. In both cells, TiO2 plays a key role in the optoelectronic properties of the cell. Various studies have reported a range of recipes and deposition techniques for TiO2 thin films. Such variety introduces some uncertainties into the optical properties of the prepared films as well as in the process repeatability. Here, we utilized machine learning methods to correlate the film porosity to the film refractive index, making it capable of studying the impact of varying the fabrication and deposition techniques. Image postprocessing for scanning electron microscope measurements was utilized to estimate the film porosity, and the refractive index was calculated from the T–λ spectra. Four sets of samples with complete bifacial DSSCs were fabricated and characterized. They recorded a maximum current of 23.42 mA. They were fabricated using carboxymethyl cellulose-based suspension and deposited via the spin-coating sol-gel method. The fabricated cells showed an overall conversion efficiency of 7.9% under optical injection of the AM1.5G spectrum from the front side and LED indoor lighting from the counter electrode.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习算法研究双面太阳能电池中TiO2薄膜光学性质的变化
摘要在各种太阳能电池结构中,染料敏化太阳能电池(DSSCs)和钙钛矿太阳能电池已经证明了双面的能力,因为它们都可以在导电玻璃电极上制造。在这两种电池中,TiO2在电池的光电性能中起着关键作用。各种各样的研究已经报道了一系列的二氧化钛薄膜的配方和沉积技术。这种变化给所制备薄膜的光学性能和工艺的可重复性带来了一些不确定性。在这里,我们利用机器学习方法将薄膜孔隙率与薄膜折射率联系起来,使其能够研究不同制造和沉积技术的影响。利用扫描电镜测量的图像后处理来估计薄膜的孔隙率,并从T -λ光谱计算折射率。制备了四组具有完整双面DSSCs的样品并对其进行了表征。他们记录的最大电流为23.42 mA。它们以羧甲基纤维素为基础的悬浮液制备,并通过自旋涂覆溶胶-凝胶法沉积。在AM1.5G光谱的正面光注入和对电极的LED室内照明下,所制备的电池的总转换效率为7.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
期刊最新文献
Techno-economic analysis of a solar thermophotovoltaic system for a residential building Solar-pumped composite YAG/Ce:Nd:YAG/YAG laser with reduced thermal effects Thermodynamic figure of merit for thermophotovoltaics Main performance metrics of thermophotovoltaic devices: analyzing the state of the art Luminescent coupling effect in InGaP/GaAs/InGaAs inverted metamorphic triple-junction solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1