Stephan Milles, J. Dahms, B. Voisiat, Simonas, A. Fábián, Lasagni
{"title":"Wetting Properties of Aluminium Surface Structures Fabricated Using Direct Laser Interference Patterning with Picosecond and Femtosecond Pulses","authors":"Stephan Milles, J. Dahms, B. Voisiat, Simonas, A. Fábián, Lasagni","doi":"10.2961/jlmn.2021.01.2013","DOIUrl":null,"url":null,"abstract":"In this work, we report about the fabrication of textured aluminium surfaces using Direct Laser Interference Patterning with picosecond (70 ps) and femtosecond (400 fs) laser pulses as well as their wetting properties. The structuring process was performed by varying the pulse numbers from 25 to 250, resulting in various depths ranging from 0.9 μm to 6.8 μm. The wetting analysis shows that the ps-patterned surfaces exhibit long-term superhydrophobic characteristics (at 21 °C and 16 % air humidity). Differently, for the fs-processed substrates, a hydrophobic character was firstly observed, which later (after 16 days) dropped to contact angles similar as the untreated material.","PeriodicalId":54788,"journal":{"name":"Journal of Laser Micro Nanoengineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Micro Nanoengineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2961/jlmn.2021.01.2013","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, we report about the fabrication of textured aluminium surfaces using Direct Laser Interference Patterning with picosecond (70 ps) and femtosecond (400 fs) laser pulses as well as their wetting properties. The structuring process was performed by varying the pulse numbers from 25 to 250, resulting in various depths ranging from 0.9 μm to 6.8 μm. The wetting analysis shows that the ps-patterned surfaces exhibit long-term superhydrophobic characteristics (at 21 °C and 16 % air humidity). Differently, for the fs-processed substrates, a hydrophobic character was firstly observed, which later (after 16 days) dropped to contact angles similar as the untreated material.
期刊介绍:
Journal of Laser Micro/Nanoengineering, founded in 2005 by Japan Laser Processing Society (JLPS), is an international online journal for the rapid publication of experimental and theoretical investigations in laser-based technology for micro- and nano-engineering. Access to the full article is provided free of charge.
JLMN publishes regular articles, technical communications, and invited papers about new results related to laser-based technology for micro and nano engineering. The articles oriented to dominantly technical or industrial developments containing interesting and useful information may be considered as technical communications.