Nadiah Syafiqah Mohd Azlan, C. L. Yap, Y. W. Tiong, S. Gan, M. B. A. Rahman
{"title":"The Interplay of Brønsted-Lowry and Lewis Acid Sites in Bifunctional Catalyst for the Biomass Conversion to Levulinic Acid","authors":"Nadiah Syafiqah Mohd Azlan, C. L. Yap, Y. W. Tiong, S. Gan, M. B. A. Rahman","doi":"10.4028/p-RNTv04","DOIUrl":null,"url":null,"abstract":"The integration of phosphotungstic acid and niobium oxide forms a bifunctional catalyst that demonstrates an interplay between Brønsted-Lowry and Lewis acid which is able to provide a synergistic effect for the conversion of biomass to LA. This bifunctional acid catalyst shows a higher yield of levulinic acid (LA) (16.4%) as compared to that of sole phosphotungstic acid (10.5%) or niobium oxide (13.2%), presumably caused by a higher selectivity at the tandem steps of the conversion reaction. The bifunctional catalyst was then doped to a lignin-derived carbon cryogel to mitigate the deactivation and leaching of the catalysts. The durability and thermal stability of the carbon cryogel allow the catalyst to recycle up to 3 times while retaining similar performance.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"61 1","pages":"71 - 76"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-RNTv04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of phosphotungstic acid and niobium oxide forms a bifunctional catalyst that demonstrates an interplay between Brønsted-Lowry and Lewis acid which is able to provide a synergistic effect for the conversion of biomass to LA. This bifunctional acid catalyst shows a higher yield of levulinic acid (LA) (16.4%) as compared to that of sole phosphotungstic acid (10.5%) or niobium oxide (13.2%), presumably caused by a higher selectivity at the tandem steps of the conversion reaction. The bifunctional catalyst was then doped to a lignin-derived carbon cryogel to mitigate the deactivation and leaching of the catalysts. The durability and thermal stability of the carbon cryogel allow the catalyst to recycle up to 3 times while retaining similar performance.