Effect of Strain Range and Hold Time on High Temperature Fatigue Life of G17CrMoV5-10 Cast Alloy Steel

Q4 Engineering Fatigue of Aircraft Structures Pub Date : 2023-02-13 DOI:10.2478/fas-2022-0001
Anna Polnik, H. Matysiak, Sławomir Czarnewicz, Z. Pakieła
{"title":"Effect of Strain Range and Hold Time on High Temperature Fatigue Life of G17CrMoV5-10 Cast Alloy Steel","authors":"Anna Polnik, H. Matysiak, Sławomir Czarnewicz, Z. Pakieła","doi":"10.2478/fas-2022-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this work, cast steel G17CrMoV5-10 was investigated. The material subject to investigation as part of this study is commonly used to manufacture steam turbine casings. Modern steam turbines operate under elevated temperature and complex oscillated loads. Thus, the focus of this study was to investigate material under behavior during low cycle fatigue (LCF) test performance at 500°C with and without hold time in tension. During all types of test, cyclic softening of cast steel was noticed. Increasing of total strain rate and applying hold time significantly reduce fatigue life. During hold time, due to temperature and tension the material creep what is confirmed by increasing inelastic stain accommodation.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, cast steel G17CrMoV5-10 was investigated. The material subject to investigation as part of this study is commonly used to manufacture steam turbine casings. Modern steam turbines operate under elevated temperature and complex oscillated loads. Thus, the focus of this study was to investigate material under behavior during low cycle fatigue (LCF) test performance at 500°C with and without hold time in tension. During all types of test, cyclic softening of cast steel was noticed. Increasing of total strain rate and applying hold time significantly reduce fatigue life. During hold time, due to temperature and tension the material creep what is confirmed by increasing inelastic stain accommodation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变范围和保温时间对G17CrMoV5-10铸合金钢高温疲劳寿命的影响
本文对铸钢G17CrMoV5-10进行了研究。作为本研究的一部分,接受调查的材料通常用于制造汽轮机机壳。现代蒸汽轮机在高温和复杂的振荡负载下运行。因此,本研究的重点是研究材料在500°C下的低周疲劳(LCF)试验性能下的行为,包括和不包括拉伸保持时间。在所有类型的试验中,都注意到铸钢的循环软化。总应变速率的增加和保持时间的应用显著降低了疲劳寿命。在保持时间内,由于温度和张力,材料蠕变,这是通过增加非弹性应变调节来证实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
期刊最新文献
Development of Diffraction Research Methodologies for Mediloy S-CO Alloy Speciments Made Using LPBF Additive Manufacturing Insight into Damping Sources in Turbines Checking the Correctness of the Process of Brazing of the Honeycomb Seal to the Base by Ultrasonic Method Prediction of Fatigue Cracks Using Gamma Function Effect of Strain Range and Hold Time on High Temperature Fatigue Life of G17CrMoV5-10 Cast Alloy Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1