Bouchmel Mliki, Rached Miri, R. Djebali, M. A. Abbassi
{"title":"CuO–Water MHD Mixed Convection Analysis and Entropy Generation Minimization in Double-Lid–Driven U-Shaped Enclosure with Discrete Heating","authors":"Bouchmel Mliki, Rached Miri, R. Djebali, M. A. Abbassi","doi":"10.2478/ama-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract The present study explores magnetic nanoliquid mixed convection in a double lid–driven U-shaped enclosure with discrete heating using the lattice Boltzmann method (LBM) numerical method. The nanoliquid thermal conductivity and viscosity are calculated using the Maxwell and Brinkman models respectively. Nanoliquid magnetohydrodynamics (MHD) and mixed convection are analyzed and entropy generation minimisation has been studied. The presented results for isotherms, stream isolines and entropy generation describe the interaction between the various physical phenomena inherent to the problem including the buoyancy, magnetic and shear forces. The operating parameters’ ranges are: Reynolds number (Re: 1–100), Hartman number (Ha: 0–80), magnetic field inclination (γ: 0°– 90°), nanoparticles volume fraction (ϕ: 0–0.04) and inclination angle (α: 0°– 90°). It was found that the Num and the total entropy generation augment by increasing Re, ϕ: and γ. conversely, an opposite effect was obtained by increasing Ha and α. The optimum magnetic field and cavity inclination angles to maximum heat transfer are γ = 90° and α = 0.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The present study explores magnetic nanoliquid mixed convection in a double lid–driven U-shaped enclosure with discrete heating using the lattice Boltzmann method (LBM) numerical method. The nanoliquid thermal conductivity and viscosity are calculated using the Maxwell and Brinkman models respectively. Nanoliquid magnetohydrodynamics (MHD) and mixed convection are analyzed and entropy generation minimisation has been studied. The presented results for isotherms, stream isolines and entropy generation describe the interaction between the various physical phenomena inherent to the problem including the buoyancy, magnetic and shear forces. The operating parameters’ ranges are: Reynolds number (Re: 1–100), Hartman number (Ha: 0–80), magnetic field inclination (γ: 0°– 90°), nanoparticles volume fraction (ϕ: 0–0.04) and inclination angle (α: 0°– 90°). It was found that the Num and the total entropy generation augment by increasing Re, ϕ: and γ. conversely, an opposite effect was obtained by increasing Ha and α. The optimum magnetic field and cavity inclination angles to maximum heat transfer are γ = 90° and α = 0.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.