Improved PERC Solar Cell Design by TCAD Simulation

A. Rehman, A. Siddiqui, M. Nadeem, M. Usman
{"title":"Improved PERC Solar Cell Design by TCAD Simulation","authors":"A. Rehman, A. Siddiqui, M. Nadeem, M. Usman","doi":"10.53560/ppasa(58-4)637","DOIUrl":null,"url":null,"abstract":"In this work, we aim to identify the performance limiting factors and consequently improve the performance of PERC solar cells through extensive TCAD based device simulation and modelling. Initially, a simplified planar PERC solar cell structure is simulated in Silvaco (Athena/Atlas), where the device geometry is selected according to an experimentally fabricated cell with an efficiency of 17.86%. The J-V curves and solar cell parameters such as Jsc, FF, Voc and efficiency (η) of the simulated cell are then fitted to the experimental performance parameters by incorporating relevant models as suggested by the literature. These include: carriers’ generation-recombination, mobility, statistics and bandgap narrowing. A good agreement is obtained, where the average percentage difference between simulated and experimental performance parameters is 0.65%. The solar cell performance is then improved to 21.52% by optimising the anti-reflective coating stack composition and thickness, and adding surface texturing. This increase in efficiency is attributed to lower surface recombination and reduced reflection due to light trapping. In addition, a textured front surface enhances the path-length of light, causing it to undergo multiple internal reflections which further increases light trapping, thus increasing Jsc by 7.31 mA/cm2. ","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(58-4)637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we aim to identify the performance limiting factors and consequently improve the performance of PERC solar cells through extensive TCAD based device simulation and modelling. Initially, a simplified planar PERC solar cell structure is simulated in Silvaco (Athena/Atlas), where the device geometry is selected according to an experimentally fabricated cell with an efficiency of 17.86%. The J-V curves and solar cell parameters such as Jsc, FF, Voc and efficiency (η) of the simulated cell are then fitted to the experimental performance parameters by incorporating relevant models as suggested by the literature. These include: carriers’ generation-recombination, mobility, statistics and bandgap narrowing. A good agreement is obtained, where the average percentage difference between simulated and experimental performance parameters is 0.65%. The solar cell performance is then improved to 21.52% by optimising the anti-reflective coating stack composition and thickness, and adding surface texturing. This increase in efficiency is attributed to lower surface recombination and reduced reflection due to light trapping. In addition, a textured front surface enhances the path-length of light, causing it to undergo multiple internal reflections which further increases light trapping, thus increasing Jsc by 7.31 mA/cm2. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过TCAD仿真改进PERC太阳能电池设计
在这项工作中,我们的目标是通过广泛的基于TCAD的设备仿真和建模来确定性能限制因素,从而提高PERC太阳能电池的性能。首先,在Silvaco (Athena/Atlas)中模拟了一个简化的平面PERC太阳能电池结构,其中根据实验制作的效率为17.86%的电池选择了器件几何形状。然后结合文献中提出的相关模型,将模拟电池的J-V曲线和太阳能电池参数如Jsc、FF、Voc和效率(η)拟合到实验性能参数中。其中包括:运营商的世代重组、移动性、统计和带隙缩小。仿真和实验性能参数之间的平均百分比差异为0.65%,得到了很好的一致性。通过优化抗反射涂层叠层组成和厚度,并增加表面纹理,使太阳能电池性能提高到21.52%。这种效率的提高是由于较低的表面复合和由于光捕获而减少的反射。此外,有纹理的前表面增加了光的路径长度,使其经历多次内部反射,从而进一步增加了光捕获,从而使Jsc增加了7.31 mA/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
期刊最新文献
Practical Analysis of Tap Water Dissolved Solids Efficient Reduction Acoustical Analysis of Insertion Losses of Ceiling Materials Blockchain in Healthcare: A Comprehensive Survey of Implementations and a Secure Model Proposal Design and Development of Neutronics and Thermal Hydraulics Modeling Code for ACP1000 Nuclear Reactor Dynamics in LabVIEW Quantum Computer Architecture: A Quantum Circuit-Based Approach Towards Quantum Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1