Unit Xgamma Distribution: Its Properties, Estimation and Application

Sharqa Hashmi, Muhammad Ahsan-ul-Haq, Javeria Zafar, M. A. Khaleel
{"title":"Unit Xgamma Distribution: Its Properties, Estimation and Application","authors":"Sharqa Hashmi, Muhammad Ahsan-ul-Haq, Javeria Zafar, M. A. Khaleel","doi":"10.53560/ppasa(59-1)636","DOIUrl":null,"url":null,"abstract":"A new one-parameter model for unit-interval datasets is introduced. The proposed distribution is termed “Unit Xgamma distribution.” Some mathematical properties of the new distribution are derived. We also characterize it using truncated moments and a hazard function. Maximum likelihood, least-squares, weighted least-squares, Anderson- Darling, Cramer-von Mises, and maximum product spacing are among the five estimation methods used to estimate the parameter. A Monte Carlo simulation was used to test the efficacy of these developed estimators. The flexibility of the proposed distribution was assessed using water capacity data. The proposed unit Xgamma distribution can be used for bounded datasets as an alternative to the well-known competitive distributions available in the literature.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(59-1)636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A new one-parameter model for unit-interval datasets is introduced. The proposed distribution is termed “Unit Xgamma distribution.” Some mathematical properties of the new distribution are derived. We also characterize it using truncated moments and a hazard function. Maximum likelihood, least-squares, weighted least-squares, Anderson- Darling, Cramer-von Mises, and maximum product spacing are among the five estimation methods used to estimate the parameter. A Monte Carlo simulation was used to test the efficacy of these developed estimators. The flexibility of the proposed distribution was assessed using water capacity data. The proposed unit Xgamma distribution can be used for bounded datasets as an alternative to the well-known competitive distributions available in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单位Xgamma分布的性质、估计及应用
介绍了一种新的单位区间数据集的单参数模型。提出的分布被称为“单位Xgamma分布”。导出了新分布的一些数学性质。我们还使用截断矩和危险函数来刻画它。最大似然、最小二乘、加权最小二乘、Anderson-Darling、Cramer-von Mises和最大乘积间距是用于估计参数的五种估计方法。使用蒙特卡罗模拟来测试这些开发的估计量的有效性。利用水量数据评估了拟议分配的灵活性。所提出的单位Xgamma分布可以用于有界数据集,作为文献中已知的竞争分布的替代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
期刊最新文献
Practical Analysis of Tap Water Dissolved Solids Efficient Reduction Acoustical Analysis of Insertion Losses of Ceiling Materials Blockchain in Healthcare: A Comprehensive Survey of Implementations and a Secure Model Proposal Design and Development of Neutronics and Thermal Hydraulics Modeling Code for ACP1000 Nuclear Reactor Dynamics in LabVIEW Quantum Computer Architecture: A Quantum Circuit-Based Approach Towards Quantum Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1