Zhiyuan Wei, Xiaohe Shen, B. Ni, G. Luo, Yi Tian, Yi Sun
{"title":"Contribution of hepatitis B virus X protein-induced aberrant microRNA expression to hepatocellular carcinoma pathogenesis","authors":"Zhiyuan Wei, Xiaohe Shen, B. Ni, G. Luo, Yi Tian, Yi Sun","doi":"10.3906/biy-1807-196","DOIUrl":null,"url":null,"abstract":"The hepatitis B virus-encoded X (HBX) protein plays important roles in Hepatocellular carcinoma (HCC). Previous studies have demonstrated that HBX can induce alterations in the expression of numerous microRNAs (miRNAs) involved in the carcinogenesis of various tumors. However, the global profile of liver miRNA changes induced by HBX has not been characterized. In this study, we conducted a miRNA microarray analysis to investigate the influence of HBX on the expression of total miRNAs in liver in relation to HCC. Comparative analysis of the data from human normal liver cells (L02) and human HCC cells (HepG2), with or without HBX, identified 19 differentially expressed miRNAs, including 5 with known association to HBX. Target gene prediction for the aberrantly expressed miRNAs identified a total of 304 potential target genes, involved in sundry pathways. Finally, pathway analysis of the HBXinduced miRNAs pathway showed that 5 of the total miRNAs formed an internetwork, suggesting that HBX might exert its pathological effects on hepatic cells through functional synergy with miRNAs that regulated common pathways in liver cells. Therefore, this work provides new insights into the mechanisms of HCC as well as potential diagnostic markers or therapeutic targets for use in clinical management of HCC.","PeriodicalId":23358,"journal":{"name":"Turkish Journal of Biology","volume":"43 1","pages":"113 - 123"},"PeriodicalIF":1.1000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/biy-1807-196","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3906/biy-1807-196","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The hepatitis B virus-encoded X (HBX) protein plays important roles in Hepatocellular carcinoma (HCC). Previous studies have demonstrated that HBX can induce alterations in the expression of numerous microRNAs (miRNAs) involved in the carcinogenesis of various tumors. However, the global profile of liver miRNA changes induced by HBX has not been characterized. In this study, we conducted a miRNA microarray analysis to investigate the influence of HBX on the expression of total miRNAs in liver in relation to HCC. Comparative analysis of the data from human normal liver cells (L02) and human HCC cells (HepG2), with or without HBX, identified 19 differentially expressed miRNAs, including 5 with known association to HBX. Target gene prediction for the aberrantly expressed miRNAs identified a total of 304 potential target genes, involved in sundry pathways. Finally, pathway analysis of the HBXinduced miRNAs pathway showed that 5 of the total miRNAs formed an internetwork, suggesting that HBX might exert its pathological effects on hepatic cells through functional synergy with miRNAs that regulated common pathways in liver cells. Therefore, this work provides new insights into the mechanisms of HCC as well as potential diagnostic markers or therapeutic targets for use in clinical management of HCC.
期刊介绍:
The Turkish Journal of Biology is published electronically 6 times a year by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts concerning all kinds of biological
processes including biochemistry and biosynthesis, physiology and metabolism, molecular genetics, molecular biology,
genomics, proteomics, molecular farming, biotechnology/genetic transformation, nanobiotechnology, bioinformatics
and systems biology, cell and developmental biology, stem cell biology, and reproductive biology. Contribution is open
to researchers of all nationalities.