Electrochemical micromachining and parameter optimization on AZ31 alloy—ANN and TOPSIS techniques

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Bulletin of the Chemical Society of Ethiopia Pub Date : 2023-06-30 DOI:10.4314/bcse.v37i5.17
N. Sivashankar, R. Thanigaivelan, K. G. Saravanan
{"title":"Electrochemical micromachining and parameter optimization on AZ31 alloy—ANN and TOPSIS techniques","authors":"N. Sivashankar, R. Thanigaivelan, K. G. Saravanan","doi":"10.4314/bcse.v37i5.17","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Electrochemical micromachining (ECM) is a nontraditional method used for machining operations in hard and light materials with fixed or varying parameters. In this study, magnesium AZ31 alloy was micro machined using two types of electrolyte supply systems, namely electrolyte flooding and minimum quantity electrolyte (MQE). Experimental investigations were performed using TOPSIS and artificial neural network (ANN) techniques with types of electrolyte supply system, electrolyte concentration (EC), duty cycle (%), and machining voltage (V) as the input parameters, and material removal rate (MRR) and over cut (OC) as the outputs. Single and multi-objective parameter optimization was performed using Taguchi, TOPSIS, and ANN techniques. The machined microholes were analyzed using scanning electron microscopy. According to the TOPSIS results, under optimal conditions, a high MRR value and minimum OC of 1.282 μm/s and 66 μm, respectively, were obtained. The results of TOPSIS were verified using the developed ANN architecture. \n  \nKEY WORDS: Magnesium, AZ31 alloy, Electrochemical micromachining, Optimization, TOPSIS, ANN \nBull. Chem. Soc. Ethiop. 2023, 37(5), 1263-1273.                                                           \nDOI: https://dx.doi.org/10.4314/bcse.v37i5.17                                                        ","PeriodicalId":9501,"journal":{"name":"Bulletin of the Chemical Society of Ethiopia","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Chemical Society of Ethiopia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v37i5.17","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT. Electrochemical micromachining (ECM) is a nontraditional method used for machining operations in hard and light materials with fixed or varying parameters. In this study, magnesium AZ31 alloy was micro machined using two types of electrolyte supply systems, namely electrolyte flooding and minimum quantity electrolyte (MQE). Experimental investigations were performed using TOPSIS and artificial neural network (ANN) techniques with types of electrolyte supply system, electrolyte concentration (EC), duty cycle (%), and machining voltage (V) as the input parameters, and material removal rate (MRR) and over cut (OC) as the outputs. Single and multi-objective parameter optimization was performed using Taguchi, TOPSIS, and ANN techniques. The machined microholes were analyzed using scanning electron microscopy. According to the TOPSIS results, under optimal conditions, a high MRR value and minimum OC of 1.282 μm/s and 66 μm, respectively, were obtained. The results of TOPSIS were verified using the developed ANN architecture.   KEY WORDS: Magnesium, AZ31 alloy, Electrochemical micromachining, Optimization, TOPSIS, ANN Bull. Chem. Soc. Ethiop. 2023, 37(5), 1263-1273.                                                           DOI: https://dx.doi.org/10.4314/bcse.v37i5.17                                                        
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AZ31合金电化学微加工及参数优化-神经网络和TOPSIS技术
摘要。电化学微机械加工(ECM)是一种非传统方法,用于在固定或可变参数的硬质和轻质材料中进行机械加工。在本研究中,使用两种类型的电解质供应系统对AZ31镁合金进行了微加工,即电解质溢流和最小量电解质(MQE)。使用TOPSIS和人工神经网络(ANN)技术进行了实验研究,以电解质供应系统的类型、电解质浓度(EC)、占空比(%)和加工电压(V)为输入参数,材料去除率(MRR)和过切(OC)为输出。使用田口、TOPSIS和人工神经网络技术进行了单目标和多目标参数优化。使用扫描电子显微镜对加工的微孔进行分析。根据TOPSIS结果,在最佳条件下,获得了高MRR值和最小OC,分别为1.282μm/s和66μm。TOPSIS的结果使用所开发的ANN架构进行了验证。关键词:镁,AZ31合金,电化学微加工,优化,TOPSIS,ANN Bull。化学。Soc.Ethiop。2023,37(5),1263-1273。DOI:https://dx.doi.org/10.4314/bcse.v37i5.17
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
113
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the Chemical Society of Ethiopia (BCSE) is a triannual publication of the Chemical Society of Ethiopia. The BCSE is an open access and peer reviewed journal. The BCSE invites contributions in any field of basic and applied chemistry.
期刊最新文献
Chemical composition, antibacterial and antioxidant activities of essential oils from Ccyphostemma adenocaule and Ziziphus spinachristi Synthesis and characterization of activated carbon from Asphodelus microcarpus in two steps A selective dispersive liquid-liquid micro-extraction technique for trace level pollutants enrichment of pharmaceutical residues from hospital wastewaters followed by liquid chromatographic analysis Synthesis, crystal structure, DFT calculation and Hirshfeld surface analysis of N-(4-methyl phenyl)-2-(3-nitro-benzamido) benzamide Assembly of two luminescent cadmium(II) 4,4'-phosphini Co-dibenzoate coordination polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1