Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints

Ying Xu, Xiaoning Zhang, Q. Han, W. Huang, Yiming Liu
{"title":"Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints","authors":"Ying Xu, Xiaoning Zhang, Q. Han, W. Huang, Yiming Liu","doi":"10.20898/j.iass.2023.014","DOIUrl":null,"url":null,"abstract":"Progressive collapse accidents of single-layer latticed domes seriously threaten public safety. The progressive collapse-resisting capacity (PCRC) is gradually becoming an essential requirement in the design of spatial structures. Currently, the joint system used in spatial structures\n can be divided into two categories: welded joints and fabricated joints. The semi-rigidity of fabricated joints may have a significant influence on the PCRC of single- layer latticed domes. In this study, the PCRCs of single-layer fabricated latticed domes with identical span and rise-to-span\n ratio are evaluated based on the critical progressive collapse load (CPCL). The collapse mechanism of single-layer latticed domes with different grid forms is revealed by progressive analysis. In addition, the effects of joint rigidity, grid form and type of initial failure are further evaluated.\n The results indicate that the collapse mechanism of single-layer latticed domes includes the radial propagation type and the circumferential propagation type. The latticed domes with quadrilateral grids have much lower PCRC than those with triangular grids. The CPCLs of weld-jointed latticed\n domes are 5% to 22% higher than those of the fabricated latticed domes with the same grid form. The above influence should be fully considered in the progressive collapse-resisting design of latticed domes with fabricated joints.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2023.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Progressive collapse accidents of single-layer latticed domes seriously threaten public safety. The progressive collapse-resisting capacity (PCRC) is gradually becoming an essential requirement in the design of spatial structures. Currently, the joint system used in spatial structures can be divided into two categories: welded joints and fabricated joints. The semi-rigidity of fabricated joints may have a significant influence on the PCRC of single- layer latticed domes. In this study, the PCRCs of single-layer fabricated latticed domes with identical span and rise-to-span ratio are evaluated based on the critical progressive collapse load (CPCL). The collapse mechanism of single-layer latticed domes with different grid forms is revealed by progressive analysis. In addition, the effects of joint rigidity, grid form and type of initial failure are further evaluated. The results indicate that the collapse mechanism of single-layer latticed domes includes the radial propagation type and the circumferential propagation type. The latticed domes with quadrilateral grids have much lower PCRC than those with triangular grids. The CPCLs of weld-jointed latticed domes are 5% to 22% higher than those of the fabricated latticed domes with the same grid form. The above influence should be fully considered in the progressive collapse-resisting design of latticed domes with fabricated joints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带装配式节点的单层网架穹顶的连续倒塌分析
单层网架穹顶连续倒塌事故严重威胁着公共安全。抗递进倒塌能力(PCRC)逐渐成为空间结构设计的基本要求。目前,空间结构中使用的连接系统可分为两大类:焊接连接和装配式连接。预制节点的半刚度对单层网壳的PCRC有重要影响。本文基于临界连续倒塌荷载(CPCL),对具有相同跨径和高跨比的单层结构网架穹顶的pcrc进行了评估。通过逐级分析,揭示了不同格网形式单层网架穹顶的坍塌机理。此外,还进一步评估了节点刚度、网格形式和初始破坏类型的影响。结果表明:单层网架穹顶的坍塌机制分为径向传播型和周向传播型;带有四边形网格的网架圆顶的PCRC明显低于带有三角形网格的网架圆顶。在相同的网格形式下,焊接网架的cpcl比预制网架的cpcl高5% ~ 22%。在装配式节点格构穹顶的渐进抗倒塌设计中,应充分考虑上述影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
17
期刊介绍: The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.
期刊最新文献
Membrane Solution for a Paraboloid under Self-Weight An Initial-Morphogenesis Technique of Free-Form Shell Roofing Based on a Fourier Transform Seismic Design of Sports Arena for Tokyo Olympic 2020 Using Energy-Dissipation Devices Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints The Gridshells for the San Francisco Salesforce Transit Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1