A study on the deformation and crushing of copper tubing: experiments, theory & FE modelling

R. Turner
{"title":"A study on the deformation and crushing of copper tubing: experiments, theory & FE modelling","authors":"R. Turner","doi":"10.25082/MER.2019.01.005","DOIUrl":null,"url":null,"abstract":"A series of 250 mm lengths of copper tubing, of 15 mm outer diameter and 0.7 mm wall thickness, were studied to determine their deformation if they were pinched or crushed between rigid objects applying a given force, to replicate potential accidental damage suffered by the copper pipes during service. A finite element modelling framework was developed to simulate the crushing of a copper pipe the same dimensions as that used for experiments, and the experimental data allowed for a validation of the pipe crushing at approximately room temperature, to consider copper pipe carrying cold water. The FE modelling activity was then extended to consider the deformation of copper pipe at 80∘C, carrying heated water at this temperature. The modelling agreed reasonably well with experiment, and applied forces of 1.5 kN began to deform the cold pipe, with the pipe collapsing on itself at loads of 6 kN. The heated pipe began to deform at roughly 1.25 kN. Lastly, theoretical flow calculations were performed to determine the Reynolds value, the flow velocity and the pressure loss and head loss per unit length of the deformed pipes, according to classical pipe flow calculation methods.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料工程研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.25082/MER.2019.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A series of 250 mm lengths of copper tubing, of 15 mm outer diameter and 0.7 mm wall thickness, were studied to determine their deformation if they were pinched or crushed between rigid objects applying a given force, to replicate potential accidental damage suffered by the copper pipes during service. A finite element modelling framework was developed to simulate the crushing of a copper pipe the same dimensions as that used for experiments, and the experimental data allowed for a validation of the pipe crushing at approximately room temperature, to consider copper pipe carrying cold water. The FE modelling activity was then extended to consider the deformation of copper pipe at 80∘C, carrying heated water at this temperature. The modelling agreed reasonably well with experiment, and applied forces of 1.5 kN began to deform the cold pipe, with the pipe collapsing on itself at loads of 6 kN. The heated pipe began to deform at roughly 1.25 kN. Lastly, theoretical flow calculations were performed to determine the Reynolds value, the flow velocity and the pressure loss and head loss per unit length of the deformed pipes, according to classical pipe flow calculation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜管的变形与破碎研究:实验、理论与有限元模拟
研究了一系列250 mm长、外径为15 mm、壁厚为0.7 mm的铜管,以确定它们在施加给定力的刚性物体之间被挤压或压碎时的变形,从而复制铜管在使用过程中遭受的潜在意外损坏。开发了一个有限元建模框架来模拟与实验尺寸相同的铜管的压碎,实验数据允许在近似室温下验证管道压碎,以考虑铜管输送冷水。然后,将有限元建模活动扩展到考虑铜管在80°C下的变形,在该温度下输送热水。模型与实验吻合得相当好,施加的1.5 kN的力开始使冷管变形,在6 kN的载荷下,管会自行塌陷。加热管在大约1.25 kN时开始变形。最后,进行理论流量计算,以确定变形管的雷诺值、流速、单位长度的压力损失和水头损失,根据经典的管道流量计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
11
期刊最新文献
Revolutionizing energy storage: Overcoming challenges and unleashing the potential of next generation Lithium-ion battery technology Load-induced local phase transformation and modulus of shape memory alloys under spherical indentation by finite element method Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects Residual properties of silicone (MED-4719) lead with leads from retrieved devices Synthesis of an eco-friendly composite of palygorskite-gypsum associated ore using corn starch and waste biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1