Pub Date : 2023-07-04DOI: 10.25082/mer.2023.01.003
Md. Dipu Ahmed, K. Maraz
Lithium-ion (Li-ion) batteries have become the leading energy storage technology, powering a wide range of applications in today's electrified world. This comprehensive review paper delves into the current challenges and innovative solutions driving the supercharged future of lithium-ion batteries. It scrutinizes the limitations of energy density in existing batteries, exploring advanced electrode materials and designs that promise higher capacity. Safety concerns take center stage, with a focus on cutting-edge thermal management systems and materials. The imperative of sustainable sourcing is addressed, highlighting alternative materials and recycling strategies for a greener supply chain. Transformative breakthroughs, such as solid-state electrolytes and emerging battery chemistries, offer glimpses of the future. The paper also examines the applications and market perspectives of lithium-ion batteries in electric vehicles, portable electronics, and renewable energy storage. It concludes by emphasizing the transformative potential of lithium-ion batteries in accelerating the energy revolution and paving the way for a sustainable energy future.
{"title":"Revolutionizing energy storage: Overcoming challenges and unleashing the potential of next generation Lithium-ion battery technology","authors":"Md. Dipu Ahmed, K. Maraz","doi":"10.25082/mer.2023.01.003","DOIUrl":"https://doi.org/10.25082/mer.2023.01.003","url":null,"abstract":"Lithium-ion (Li-ion) batteries have become the leading energy storage technology, powering a wide range of applications in today's electrified world. This comprehensive review paper delves into the current challenges and innovative solutions driving the supercharged future of lithium-ion batteries. It scrutinizes the limitations of energy density in existing batteries, exploring advanced electrode materials and designs that promise higher capacity. Safety concerns take center stage, with a focus on cutting-edge thermal management systems and materials. The imperative of sustainable sourcing is addressed, highlighting alternative materials and recycling strategies for a greener supply chain. Transformative breakthroughs, such as solid-state electrolytes and emerging battery chemistries, offer glimpses of the future. The paper also examines the applications and market perspectives of lithium-ion batteries in electric vehicles, portable electronics, and renewable energy storage. It concludes by emphasizing the transformative potential of lithium-ion batteries in accelerating the energy revolution and paving the way for a sustainable energy future.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47120408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-14DOI: 10.25082/mer.2023.01.002
S. Saghaian, Y. Lu, S. Saghaian, H. Karaca
Shape memory alloys are a unique class of materials that are capable of large reversible deformations under external stimuli such as stress or temperature. The present study examines the phase transformations and mechanical responses of NiTi and NiTiHf shape memory alloys under the loading of a spherical indenter by using a finite element model. It is found that the indentation unloading curves exhibit distinct changes in slopes due to the reversible phase transformations in the SMAs. The normalized contact stiffness (F/S2) of the SMAs varies with the indentation load (depth) as opposed to being constant for conventional single-phase materials. The load-induced phase transformation that occurred under the spherical indenter was simulated numerically. It is observed that the phase transformation phenomenon in the SMA induced by an indentation load is distinctly different from that induced by a uniaxial load. A pointed indenter produces a localized deformation, resulting in a stress (load) gradient in the specimen. As a result, the transformation of phases in SMAs induced by an indenter can only be partially completed. The overall modulus of the SMAs varies continuously with the indentation load (depth) as the average volumetric fraction of the martensite phase varies. For NiTi (Ea > Em), the modulus decreases with the depth, while for NiTiHf (Ea < Em), the modulus increases with the depth. The predicted young modules during indentation modeling agree well with experimental results. Finally, the phase transformation of the SMAs under the indenter is not affected by the post-yield behavior of the materials.
{"title":"Load-induced local phase transformation and modulus of shape memory alloys under spherical indentation by finite element method","authors":"S. Saghaian, Y. Lu, S. Saghaian, H. Karaca","doi":"10.25082/mer.2023.01.002","DOIUrl":"https://doi.org/10.25082/mer.2023.01.002","url":null,"abstract":"Shape memory alloys are a unique class of materials that are capable of large reversible deformations under external stimuli such as stress or temperature. The present study examines the phase transformations and mechanical responses of NiTi and NiTiHf shape memory alloys under the loading of a spherical indenter by using a finite element model. It is found that the indentation unloading curves exhibit distinct changes in slopes due to the reversible phase transformations in the SMAs. The normalized contact stiffness (F/S2) of the SMAs varies with the indentation load (depth) as opposed to being constant for conventional single-phase materials. The load-induced phase transformation that occurred under the spherical indenter was simulated numerically. It is observed that the phase transformation phenomenon in the SMA induced by an indentation load is distinctly different from that induced by a uniaxial load. A pointed indenter produces a localized deformation, resulting in a stress (load) gradient in the specimen. As a result, the transformation of phases in SMAs induced by an indenter can only be partially completed. The overall modulus of the SMAs varies continuously with the indentation load (depth) as the average volumetric fraction of the martensite phase varies. For NiTi (Ea > Em), the modulus decreases with the depth, while for NiTiHf (Ea < Em), the modulus increases with the depth. The predicted young modules during indentation modeling agree well with experimental results. Finally, the phase transformation of the SMAs under the indenter is not affected by the post-yield behavior of the materials.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44331111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19DOI: 10.25082/mer.2023.01.001
Dipu Ahmed, K. Maraz
Although lithium-ion batteries have gained widespread use in high-performance and mobile industries, concerns about their safety due to the low boiling point of their organic liquid electrolyte have posed challenges to their further development. In response, solid polymer electrolytes have emerged as a promising alternative, characterized by low flammability, flexibility, and high safety relative to liquid electrolytes. However, commercialization has been hindered by limitations in Li-ion conductivity and mechanical properties. Recent research efforts have focused on addressing these limitations to improve the performance and safety of polymer-based Li-ion batteries. This review discusses the utilization of polymer materials to enhance battery safety and overcome previous challenges, with a particular emphasis on the design of robust artificial interfaces to increase battery stability. Furthermore, we discuss the prospects for the future of polymer-based battery industries.
{"title":"Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects","authors":"Dipu Ahmed, K. Maraz","doi":"10.25082/mer.2023.01.001","DOIUrl":"https://doi.org/10.25082/mer.2023.01.001","url":null,"abstract":"Although lithium-ion batteries have gained widespread use in high-performance and mobile industries, concerns about their safety due to the low boiling point of their organic liquid electrolyte have posed challenges to their further development. In response, solid polymer electrolytes have emerged as a promising alternative, characterized by low flammability, flexibility, and high safety relative to liquid electrolytes. However, commercialization has been hindered by limitations in Li-ion conductivity and mechanical properties. Recent research efforts have focused on addressing these limitations to improve the performance and safety of polymer-based Li-ion batteries. This review discusses the utilization of polymer materials to enhance battery safety and overcome previous challenges, with a particular emphasis on the design of robust artificial interfaces to increase battery stability. Furthermore, we discuss the prospects for the future of polymer-based battery industries.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41532854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.25082/mer.2022.01.002
Amena S. Shermadou, S. Lindheim, J. Yaklic, T. Goswami
Ethicon Coated Vicryl absorbable sutures of different diameters were studied in order to determine if a relationship exists between the load and measured clearance. A prototype was designed to simulate knot location. Tensile tests were conducted on the suture knots followed by clearance measurements after each load level was applied. From the results it was concluded that the measured clearance was directly proportional to the amount of load applied to the suture knot. Also, based on the diameter of the suture, the smaller the diameter, the lower was the total displacement of the knot or the clearance.
{"title":"Relationship between applied load and clearance in suture knots","authors":"Amena S. Shermadou, S. Lindheim, J. Yaklic, T. Goswami","doi":"10.25082/mer.2022.01.002","DOIUrl":"https://doi.org/10.25082/mer.2022.01.002","url":null,"abstract":"Ethicon Coated Vicryl absorbable sutures of different diameters were studied in order to determine if a relationship exists between the load and measured clearance. A prototype was designed to simulate knot location. Tensile tests were conducted on the suture knots followed by clearance measurements after each load level was applied. From the results it was concluded that the measured clearance was directly proportional to the amount of load applied to the suture knot. Also, based on the diameter of the suture, the smaller the diameter, the lower was the total displacement of the knot or the clearance.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.25082/mer.2022.01.001
Anne Marie Lutz, T. Goswami
This article was prepared from a project assigned in a graduate class, BME 7371, Failure Assessment of Medical Devices, taught at Wright State University by the senior author. The device was donated for the study which was successfully retrieved after 93 days in-vivo. Even-though the mechanical integrity of the device held in-tact, the microscopic observations revealed that the damage via corrosion and scratching took place on the surface of the device. The image reconstructed in 3D using image-J software to determine device roughness and depth-of-pits. Results presented in this paper show that damage starts developing in these devices after the implantation that resulted in premature failure in many cases as reported in the media and literature.
{"title":"In-vivo damage development in Vena Cava Filter: Study of a retrieved device","authors":"Anne Marie Lutz, T. Goswami","doi":"10.25082/mer.2022.01.001","DOIUrl":"https://doi.org/10.25082/mer.2022.01.001","url":null,"abstract":"This article was prepared from a project assigned in a graduate class, BME 7371, Failure Assessment of Medical Devices, taught at Wright State University by the senior author. The device was donated for the study which was successfully retrieved after 93 days in-vivo. Even-though the mechanical integrity of the device held in-tact, the microscopic observations revealed that the damage via corrosion and scratching took place on the surface of the device. The image reconstructed in 3D using image-J software to determine device roughness and depth-of-pits. Results presented in this paper show that damage starts developing in these devices after the implantation that resulted in premature failure in many cases as reported in the media and literature.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.25082/mer.2022.01.004
Kelly Hunt, Mallory Bates, Gerald Klint Simon, Tarun Goswami
Hearing aid devices are powered by the oxidation of oxygen and zinc that occurs within zinc-air batteries. Zinc-air batteries have an average discharge time of 7 days. Therefore, hearing-aid devices need frequent battery replacement. In this paper, degradation mechanisms of zinc-air batteries investigated where a competition mechanism between zinc passivation and dendritic formation dictates the battery life. This research included exposure time from none to 9 days and to document dendritic growth with time. Scanning electron microscope images were taken to quantify the damage growth as well energy dispersive X-ray tests were conducted to comment on the composition changes. The results confirmed an increase in oxygen in exposed batteries from unexposed. These results matched findings from past literature. Exposure time was investigated to optimize battery lifespan. In conclusion, life of zinc-air batteries depends on the competition mechanism of zinc passivation and dendritic formation caused by oxidation and our investigation shows that this occurs within the first 7 days.
{"title":"Degradation mechanisms of zinc-air batteries used in hearing aid","authors":"Kelly Hunt, Mallory Bates, Gerald Klint Simon, Tarun Goswami","doi":"10.25082/mer.2022.01.004","DOIUrl":"https://doi.org/10.25082/mer.2022.01.004","url":null,"abstract":"Hearing aid devices are powered by the oxidation of oxygen and zinc that occurs within zinc-air batteries. Zinc-air batteries have an average discharge time of 7 days. Therefore, hearing-aid devices need frequent battery replacement. In this paper, degradation mechanisms of zinc-air batteries investigated where a competition mechanism between zinc passivation and dendritic formation dictates the battery life. This research included exposure time from none to 9 days and to document dendritic growth with time. Scanning electron microscope images were taken to quantify the damage growth as well energy dispersive X-ray tests were conducted to comment on the composition changes. The results confirmed an increase in oxygen in exposed batteries from unexposed. These results matched findings from past literature. Exposure time was investigated to optimize battery lifespan. In conclusion, life of zinc-air batteries depends on the competition mechanism of zinc passivation and dendritic formation caused by oxidation and our investigation shows that this occurs within the first 7 days.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Composite materials were prepared with palygorskite-gypsum associated ore, modified corn starch and corn stalk as raw materials, glycerin as plasticizer, ammonium persulfate as initiator, KH-560 as organosilane coupling agent and linseed gum as adhesion promoter. Tensile strength, flexural resistance and compressive strength were used as the evaluation criteria to investigate the optimal ratio of composite material. The effect of the content of palygorskite-gypsum associated ore and glycerol, the ratio of modified starch to corn stalk as well as the ratio of initiator to coupling agent on the mechanical properties was investigated. Composite materials were characterized by means of SEM, FT-IR, XRD and TG/DTG. The impact on the environment of composite material was evaluated via measuring the degradation and bacteriostatic properties. The degradation rate of the composite reached 52.7% when the degradation time was 42 d and the composite had a good antibacterial property.
{"title":"Synthesis of an eco-friendly composite of palygorskite-gypsum associated ore using corn starch and waste biomass","authors":"Haifeng Tian, Peng Gao, Hai-Xin Tian, F. Zha, Zengjun Wang, Xiaojun Guo, Xiaohua Tang, Yue Chang","doi":"10.25082/mer.2021.01.006","DOIUrl":"https://doi.org/10.25082/mer.2021.01.006","url":null,"abstract":"Composite materials were prepared with palygorskite-gypsum associated ore, modified corn starch and corn stalk as raw materials, glycerin as plasticizer, ammonium persulfate as initiator, KH-560 as organosilane coupling agent and linseed gum as adhesion promoter. Tensile strength, flexural resistance and compressive strength were used as the evaluation criteria to investigate the optimal ratio of composite material. The effect of the content of palygorskite-gypsum associated ore and glycerol, the ratio of modified starch to corn stalk as well as the ratio of initiator to coupling agent on the mechanical properties was investigated. Composite materials were characterized by means of SEM, FT-IR, XRD and TG/DTG. The impact on the environment of composite material was evaluated via measuring the degradation and bacteriostatic properties. The degradation rate of the composite reached 52.7% when the degradation time was 42 d and the composite had a good antibacterial property.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.25082/mer.2022.01.005
A. Salih, Tarun Goswami
Leads are designed for in vivo applications, however, for a definite period of time. In-vivo environment affects the mechanical behavior of implantable devices, therefore, there is a need to evaluate the residual properties of implantable leads used with pacemakers, defibrillator and neuro-stimulators. Silicone (MED-4719) lead is widely used in cardiac implantable electronic devices made by different manufacturers. . We collected 150 devices (with or without leads) from Anatomical Gift Program of the Wright State University. The objective of this study was to investigate the residual properties of Silicone (MED-4719) lead with different in vivo exposure time and compare the properties of a new, unused lead supplied by Medtronic for the purposes of this research. The tensile test was performed by applying specific load on the samples, percentage elongation at 5N and the corresponding displacement measured. Load to failure, percentage elongation, ultimate tensile strength, and modulus of elasticity were determined for each lead. Methods to collect and compile data were standardized, and statistical models were used to assess the sensitivity of measured parameters with in vivo performance. Load to failure, elongation to failure, ultimate tensile strength, and percentage elongation at 5N showed a significant decrease after 94 months (P = 0.0063), 8 months (P = 0.0136), 94 months (P = 0.0244) and 71 months (P-value = 0.0326) after implantation, respectively. On the other hand, modulus of elasticity was found proportional to the number of months device was exposed and showed significant increase after 71 months (P = 0.0446) of in-vivo environment.
{"title":"Residual properties of silicone (MED-4719) lead with leads from retrieved devices","authors":"A. Salih, Tarun Goswami","doi":"10.25082/mer.2022.01.005","DOIUrl":"https://doi.org/10.25082/mer.2022.01.005","url":null,"abstract":"Leads are designed for in vivo applications, however, for a definite period of time. In-vivo environment affects the mechanical behavior of implantable devices, therefore, there is a need to evaluate the residual properties of implantable leads used with pacemakers, defibrillator and neuro-stimulators. Silicone (MED-4719) lead is widely used in cardiac implantable electronic devices made by different manufacturers. . We collected 150 devices (with or without leads) from Anatomical Gift Program of the Wright State University. The objective of this study was to investigate the residual properties of Silicone (MED-4719) lead with different in vivo exposure time and compare the properties of a new, unused lead supplied by Medtronic for the purposes of this research. The tensile test was performed by applying specific load on the samples, percentage elongation at 5N and the corresponding displacement measured. Load to failure, percentage elongation, ultimate tensile strength, and modulus of elasticity were determined for each lead. Methods to collect and compile data were standardized, and statistical models were used to assess the sensitivity of measured parameters with in vivo performance. Load to failure, elongation to failure, ultimate tensile strength, and percentage elongation at 5N showed a significant decrease after 94 months (P = 0.0063), 8 months (P = 0.0136), 94 months (P = 0.0244) and 71 months (P-value = 0.0326) after implantation, respectively. On the other hand, modulus of elasticity was found proportional to the number of months device was exposed and showed significant increase after 71 months (P = 0.0446) of in-vivo environment.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.25082/mer.2022.01.003
Ashley Whitney-Rawls, Paul Copp, Jace Carter, Tarun Goswami
Failure of critical engine components such as compressor, fan, and turbine disks during flight can cause the loss of the engine, aircraft, or even life. To reduce the risk of this failure during flight, different methodologies and tools have been developed to determine the safe operating life of these critical disk components. The two most widely used lifing methods, safe-life and damage tolerance, are inherently conservative, retiring all components when a predetermined operating limit is reached. Both methods retire components with theoretical useful life remaining. Additional lifing methods can be used to reduce this conservatism and extend the life of these components. Retirement for cause, developed within the United States Air Force is a lifing method that can extend the life of components by retiring a component only when there is cause to do so. Military and industry standards on lifing methodologies were reviewed. Both deterministic and probabilistic approaches to disk lifing methods are discussed as well as current tools. This paper provides a comparison of the methodologies and tools currently being used today by both the government and industry.
{"title":"Comparison of aero engine component lifing methods","authors":"Ashley Whitney-Rawls, Paul Copp, Jace Carter, Tarun Goswami","doi":"10.25082/mer.2022.01.003","DOIUrl":"https://doi.org/10.25082/mer.2022.01.003","url":null,"abstract":"Failure of critical engine components such as compressor, fan, and turbine disks during flight can cause the loss of the engine, aircraft, or even life. To reduce the risk of this failure during flight, different methodologies and tools have been developed to determine the safe operating life of these critical disk components. The two most widely used lifing methods, safe-life and damage tolerance, are inherently conservative, retiring all components when a predetermined operating limit is reached. Both methods retire components with theoretical useful life remaining. Additional lifing methods can be used to reduce this conservatism and extend the life of these components. Retirement for cause, developed within the United States Air Force is a lifing method that can extend the life of components by retiring a component only when there is cause to do so. Military and industry standards on lifing methodologies were reviewed. Both deterministic and probabilistic approaches to disk lifing methods are discussed as well as current tools. This paper provides a comparison of the methodologies and tools currently being used today by both the government and industry.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.25082/mer.2021.01.005
Shu Liu, J. Cui
The corrosion behaviors of six Fe-19Ni-13/21Cr-xAl (x = 0, 2, 6 at. %) alloys in 10% CH4/H2 at 800oC were investigated. 2 at. % Al did not affect the corrosion resistance obviously, while 6 at. % Al reduced the carbon attack completely for Fe-19Ni-13Cr-6Al but was still insufficient to form protective alumina scales for alloys with 21 at. % Cr. An increase of Cr content changed the appearance of the internal carburization zone under the optical microscope. Stability diagrams of M-C-O system(M= Cr, Fe)were established to estimate the diffusion paths of carbon in the alloys.
{"title":"Carburization effect of Austenitic alloys with various Cr and Al additions under the methane/hydrogen atmosphere on the corrosion behaviors of steels","authors":"Shu Liu, J. Cui","doi":"10.25082/mer.2021.01.005","DOIUrl":"https://doi.org/10.25082/mer.2021.01.005","url":null,"abstract":"The corrosion behaviors of six Fe-19Ni-13/21Cr-xAl (x = 0, 2, 6 at. %) alloys in 10% CH4/H2 at 800oC were investigated. 2 at. % Al did not affect the corrosion resistance obviously, while 6 at. % Al reduced the carbon attack completely for Fe-19Ni-13Cr-6Al but was still insufficient to form protective alumina scales for alloys with 21 at. % Cr. An increase of Cr content changed the appearance of the internal carburization zone under the optical microscope. Stability diagrams of M-C-O system(M= Cr, Fe)were established to estimate the diffusion paths of carbon in the alloys.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69217460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}