Residual properties of silicone (MED-4719) lead with leads from retrieved devices

A. Salih, Tarun Goswami
{"title":"Residual properties of silicone (MED-4719) lead with leads from retrieved devices","authors":"A. Salih, Tarun Goswami","doi":"10.25082/mer.2022.01.005","DOIUrl":null,"url":null,"abstract":"Leads are designed for in vivo applications, however, for a definite period of time. In-vivo environment affects the mechanical behavior of implantable devices, therefore, there is a need to evaluate the residual properties of implantable leads used with pacemakers, defibrillator and neuro-stimulators. Silicone (MED-4719) lead is widely used in cardiac implantable electronic devices made by different manufacturers. . We collected 150 devices (with or without leads) from Anatomical Gift Program of the Wright State University. The objective of this study was to investigate the residual properties of Silicone (MED-4719) lead with different in vivo exposure time and compare the properties of a new, unused lead supplied by Medtronic for the purposes of this research. The tensile test was performed by applying specific load on the samples, percentage elongation at 5N and the corresponding displacement measured. Load to failure, percentage elongation, ultimate tensile strength, and modulus of elasticity were determined for each lead. Methods to collect and compile data were standardized, and statistical models were used to assess the sensitivity of measured parameters with in vivo performance. Load to failure, elongation to failure, ultimate tensile strength, and percentage elongation at 5N showed a significant decrease after 94 months (P = 0.0063), 8 months (P = 0.0136), 94 months (P = 0.0244) and 71 months (P-value = 0.0326) after implantation, respectively. On the other hand, modulus of elasticity was found proportional to the number of months device was exposed and showed significant increase after 71 months (P = 0.0446) of in-vivo environment.","PeriodicalId":63081,"journal":{"name":"材料工程研究(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料工程研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.25082/mer.2022.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Leads are designed for in vivo applications, however, for a definite period of time. In-vivo environment affects the mechanical behavior of implantable devices, therefore, there is a need to evaluate the residual properties of implantable leads used with pacemakers, defibrillator and neuro-stimulators. Silicone (MED-4719) lead is widely used in cardiac implantable electronic devices made by different manufacturers. . We collected 150 devices (with or without leads) from Anatomical Gift Program of the Wright State University. The objective of this study was to investigate the residual properties of Silicone (MED-4719) lead with different in vivo exposure time and compare the properties of a new, unused lead supplied by Medtronic for the purposes of this research. The tensile test was performed by applying specific load on the samples, percentage elongation at 5N and the corresponding displacement measured. Load to failure, percentage elongation, ultimate tensile strength, and modulus of elasticity were determined for each lead. Methods to collect and compile data were standardized, and statistical models were used to assess the sensitivity of measured parameters with in vivo performance. Load to failure, elongation to failure, ultimate tensile strength, and percentage elongation at 5N showed a significant decrease after 94 months (P = 0.0063), 8 months (P = 0.0136), 94 months (P = 0.0244) and 71 months (P-value = 0.0326) after implantation, respectively. On the other hand, modulus of elasticity was found proportional to the number of months device was exposed and showed significant increase after 71 months (P = 0.0446) of in-vivo environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机硅(MED-4719)引线的残留特性与从回收的设备引线
然而,引线是为体内应用而设计的,有一定的时间。体内环境影响植入式装置的机械行为,因此,有必要评估与起搏器、除颤器和神经刺激器一起使用的植入式导联的残留特性。硅胶(MED-4719)引线广泛应用于不同厂家生产的心脏植入式电子设备。我们从赖特州立大学的解剖捐赠项目中收集了150个设备(带或不带导线)。本研究的目的是研究不同体内暴露时间下有机硅(MED-4719)铅的残留特性,并比较美敦力公司为本研究提供的一种新的未使用铅的特性。拉伸试验是通过对试样施加比载荷,在5N时测量伸长率和相应的位移来进行的。对每根引线进行了失效载荷、伸长率、极限抗拉强度和弹性模量的测定。标准化数据收集和整理方法,采用统计模型评价所测参数与体内性能的敏感性。植入后94个月(P = 0.0063)、8个月(P = 0.0136)、94个月(P = 0.0244)和71个月(P值= 0.0326),载荷失效率、断裂伸长率、极限抗拉强度和5N伸长率均显著降低。另一方面,弹性模量与装置暴露的月数成正比,在体内环境71个月后,弹性模量显著增加(P = 0.0446)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
11
期刊最新文献
Revolutionizing energy storage: Overcoming challenges and unleashing the potential of next generation Lithium-ion battery technology Load-induced local phase transformation and modulus of shape memory alloys under spherical indentation by finite element method Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects Residual properties of silicone (MED-4719) lead with leads from retrieved devices Synthesis of an eco-friendly composite of palygorskite-gypsum associated ore using corn starch and waste biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1