Shuyu Shi , Hongze Ren , Yujie Xie , Meihua Yu , Yu Chen , Liqun Yang
{"title":"Engineering advanced nanomedicines against central nervous system diseases","authors":"Shuyu Shi , Hongze Ren , Yujie Xie , Meihua Yu , Yu Chen , Liqun Yang","doi":"10.1016/j.mattod.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the impressive strides in the research community, numerous obstacles pose marked challenges in the treatment of central nervous system (CNS) disorders. The limitations of current therapeutics are primarily attributed to the systemic and local barriers, particularly the intact blood–brain barriers (BBB). Nanomedicine represents one promising avenue, which enables safe and effective delivery of neurotherapeutics into the CNS by traversing or bypassing the physical barriers. Here, we provide an overview of recent progress of advanced nanoengineering technologies for delivery of neurotherapeutics and elucidate how the emerging nanotherapeutics overcome the restrictive barriers with enhanced therapeutic implications to CNS diseases. The non-invasive strategies crossing BBB mainly comprise carrier-mediated transport, cell-mediated transport, adsorptive mediated transport, paracellular transport, passive diffusion, and receptor-mediated transport. We briefly discuss the typical paradigms of nanomaterials and their physiochemical factors determining CNS transport efficacy, particularly focusing on the applications of advanced nanotechnology in the management of ischemic stroke, neurodegenerative diseases, infectious diseases, pain, and tumor. The prospects and challenges of neuro-nanotherapeutics toward clinical translation are also analyzed from our point of view.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"69 ","pages":"Pages 355-392"},"PeriodicalIF":21.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702123002614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the impressive strides in the research community, numerous obstacles pose marked challenges in the treatment of central nervous system (CNS) disorders. The limitations of current therapeutics are primarily attributed to the systemic and local barriers, particularly the intact blood–brain barriers (BBB). Nanomedicine represents one promising avenue, which enables safe and effective delivery of neurotherapeutics into the CNS by traversing or bypassing the physical barriers. Here, we provide an overview of recent progress of advanced nanoengineering technologies for delivery of neurotherapeutics and elucidate how the emerging nanotherapeutics overcome the restrictive barriers with enhanced therapeutic implications to CNS diseases. The non-invasive strategies crossing BBB mainly comprise carrier-mediated transport, cell-mediated transport, adsorptive mediated transport, paracellular transport, passive diffusion, and receptor-mediated transport. We briefly discuss the typical paradigms of nanomaterials and their physiochemical factors determining CNS transport efficacy, particularly focusing on the applications of advanced nanotechnology in the management of ischemic stroke, neurodegenerative diseases, infectious diseases, pain, and tumor. The prospects and challenges of neuro-nanotherapeutics toward clinical translation are also analyzed from our point of view.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.