Numerical Investigation of the Impact of Onshore Fish Farming on the Western Coast of Algeria

Q4 Agricultural and Biological Sciences Aquaculture Studies Pub Date : 2022-11-08 DOI:10.4194/aquast934
Youssra Imane Aissaoui, Dahbia Mokhbi-Soukane, K. Mezouar, S. Soukane
{"title":"Numerical Investigation of the Impact of Onshore Fish Farming on the Western Coast of Algeria","authors":"Youssra Imane Aissaoui, Dahbia Mokhbi-Soukane, K. Mezouar, S. Soukane","doi":"10.4194/aquast934","DOIUrl":null,"url":null,"abstract":"A methodology for aquaculture site selection is presented using a combined hydrodynamic/nutritional model to predict fish farm wastes and dispersion, using the indirect fish waste estimation method, and the numerical model MIKE 21. This method can be used as a basis for assessment of the environmental impact of fish farms. The models were applied for a virtual inland fish farm to harvest 450 tons of sea bass in the west coast of Algeria. The results show that the fish farm effluents quantities and dispersion depends on the production cycle and size, the hydrodynamic parameters, as well as the food quantity and composition. The suspended waste, nitrogen and phosphorus are respectively the main contributors to the fish farm pollution. The current speed varies from 0.005 to 0.045 m/s, while the nitrogen and phosphorus concentrations reached 2.1 mg/L, and 0.03 mg/L respectively. This study allows the Algerian authorities to decide upon delivering fish farming permissions in the studied area, by identifying the suitability of the area for aquaculture, and predicting potential fish farm pollution. The use of numerical models in aquaculture could help reducing installation, water treatment costs and the environmental impact of fish farms by contributing to the sustainability of the activity.","PeriodicalId":36343,"journal":{"name":"Aquaculture Studies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4194/aquast934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

A methodology for aquaculture site selection is presented using a combined hydrodynamic/nutritional model to predict fish farm wastes and dispersion, using the indirect fish waste estimation method, and the numerical model MIKE 21. This method can be used as a basis for assessment of the environmental impact of fish farms. The models were applied for a virtual inland fish farm to harvest 450 tons of sea bass in the west coast of Algeria. The results show that the fish farm effluents quantities and dispersion depends on the production cycle and size, the hydrodynamic parameters, as well as the food quantity and composition. The suspended waste, nitrogen and phosphorus are respectively the main contributors to the fish farm pollution. The current speed varies from 0.005 to 0.045 m/s, while the nitrogen and phosphorus concentrations reached 2.1 mg/L, and 0.03 mg/L respectively. This study allows the Algerian authorities to decide upon delivering fish farming permissions in the studied area, by identifying the suitability of the area for aquaculture, and predicting potential fish farm pollution. The use of numerical models in aquaculture could help reducing installation, water treatment costs and the environmental impact of fish farms by contributing to the sustainability of the activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿尔及利亚西海岸陆上养鱼影响的数值调查
本文提出了一种水产养殖场地选择方法,该方法使用水动力/营养组合模型来预测养鱼场废物和分散,使用间接鱼类废物估计方法和数值模型MIKE 21。该方法可作为评估养鱼场对环境影响的基础。这些模型被应用于阿尔及利亚西海岸的一个虚拟内陆养鱼场,收获了450吨鲈鱼。结果表明,养鱼场污水的数量和扩散与生产周期和规模、水动力参数以及食物的数量和成分有关。悬浮废物、氮和磷分别是养鱼场污染的主要来源。流速为0.005 ~ 0.045 m/s,氮、磷浓度分别达到2.1 mg/L和0.03 mg/L。这项研究使阿尔及利亚当局能够通过确定该地区是否适合水产养殖,并预测潜在的养鱼场污染,来决定在研究地区发放养鱼许可。在水产养殖中使用数值模型可以通过促进活动的可持续性,帮助减少养鱼场的安装、水处理费用和环境影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Studies
Aquaculture Studies Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
1.30
自引率
0.00%
发文量
17
期刊最新文献
Isolation, Identification, and Biofloc Production: Potential of Floc-Forming Bacteria Using a Novel Monoculture Approach and Medium Dawadawa and Kantong Additives Improve the Growth and Health of Nile Tilapia (Oreochromis niloticus) Influence of Silver Nanoparticle Supplementation on Growth Performance, Immune Response, Tissue Biopsy, and Gene Transcription in the Aeromonas carviae challenged Labeo rohita Evaluating the Use of Crude and Synthetic Gossypol as Reproduction Bio-control Agents in Coptodon zillii and Oreochromis niloticus Efficacy of Oxolinic Acid Against Aeromonas hydrophila Infection in Nile tilapia Oreochromis niloticus Juveniles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1