求助PDF
{"title":"京津冀及周边地区冬季能见度与PM 2.5 浓度和环境湿度的多元回归分析","authors":"刘兆东, 王宏, 沈新勇, 彭玥, 施义舍","doi":"10.11676/QXXB2020.036","DOIUrl":null,"url":null,"abstract":"2013年至今,中国冬季与雾霾相伴的低能见度事件频发,京津冀及周边地区尤为严重。PM2.5浓度与环境湿度是导致低能见度的最关键影响因素。为了深入研究PM2.5浓度与环境湿度对大气能见度的影响,利用2017年1月京津冀及周边地区MICAPS气象数据与PM2.5观测数据,运用天气学诊断分析方法讨论了不同相对湿度下PM2.5浓度、环境湿度对冬季能见度变化的相对贡献,按照地理环境与污染程度差异将京津冀及周边地区划分为北京-天津地区与河北-山东地区,建立了PM2.5浓度与环境湿度(由露点温度、温度代表)对能见度的多元回归方程,并对2015、2016、2018、2019年冬季能见度进行了回算检验。结果显示:相对湿度低于70%、PM2.5浓度低于75 μg/m3时,北京-天津地区与河北-山东地区能见度多高于10 km,PM2.5浓度升高是此时能见度迅速降低的主导因素;相对湿度从70%上升至85%和PM2.5浓度从75 μg/m3升高200 μg/m3的共同作用导致了能见度降低到10 km至5 km;能见度进一步从5 km下降至2 km则更多依赖于相对湿度进一步从85%升高至95%,PM2.5浓度与此时能见度相关减弱;能见度降低至2 km甚至更低主要是由于水汽近饱和状态下(相对湿度95%以上)的雾滴消光引起,与PM2.5浓度的变化关系不大。与不分组直接拟合相比,以相对湿度85%为界线,分别拟合能见度能够很大程度优化多元回归模型,相对湿度高于85%时能见度拟合值的均方根误差从9.2和5.2 km下降至0.5和0.7 km,5 km以下拟合能见度的误差大幅度减小。按相对湿度85%将数据分组所得的拟合方程对2015、2016、2018、2019年1月能见度估算结果较好,观测值与拟合值相关系数均高于0.91,为雾-霾数值预报系统提供了新的能见度参数化算法。","PeriodicalId":50890,"journal":{"name":"Acta Meteorologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Meteorologica Sinica","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11676/QXXB2020.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
引用
批量引用
京津冀及周边地区冬季能见度与PM 2.5 浓度和环境湿度的多元回归分析
2013年至今,中国冬季与雾霾相伴的低能见度事件频发,京津冀及周边地区尤为严重。PM2.5浓度与环境湿度是导致低能见度的最关键影响因素。为了深入研究PM2.5浓度与环境湿度对大气能见度的影响,利用2017年1月京津冀及周边地区MICAPS气象数据与PM2.5观测数据,运用天气学诊断分析方法讨论了不同相对湿度下PM2.5浓度、环境湿度对冬季能见度变化的相对贡献,按照地理环境与污染程度差异将京津冀及周边地区划分为北京-天津地区与河北-山东地区,建立了PM2.5浓度与环境湿度(由露点温度、温度代表)对能见度的多元回归方程,并对2015、2016、2018、2019年冬季能见度进行了回算检验。结果显示:相对湿度低于70%、PM2.5浓度低于75 μg/m3时,北京-天津地区与河北-山东地区能见度多高于10 km,PM2.5浓度升高是此时能见度迅速降低的主导因素;相对湿度从70%上升至85%和PM2.5浓度从75 μg/m3升高200 μg/m3的共同作用导致了能见度降低到10 km至5 km;能见度进一步从5 km下降至2 km则更多依赖于相对湿度进一步从85%升高至95%,PM2.5浓度与此时能见度相关减弱;能见度降低至2 km甚至更低主要是由于水汽近饱和状态下(相对湿度95%以上)的雾滴消光引起,与PM2.5浓度的变化关系不大。与不分组直接拟合相比,以相对湿度85%为界线,分别拟合能见度能够很大程度优化多元回归模型,相对湿度高于85%时能见度拟合值的均方根误差从9.2和5.2 km下降至0.5和0.7 km,5 km以下拟合能见度的误差大幅度减小。按相对湿度85%将数据分组所得的拟合方程对2015、2016、2018、2019年1月能见度估算结果较好,观测值与拟合值相关系数均高于0.91,为雾-霾数值预报系统提供了新的能见度参数化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。