利用福建龙岩、漳州、泉州新一代多普勒天气雷达和厦门海沧双偏振雷达探测资料,采用动态地球坐标系下双雷达三维风场反演与拼图技术,基于天气研究和预报模式(Weather Research and Forecasting,WRF)及其资料同化系统,对登陆台风“莫兰蒂”(1614)引起的2016年9月14—15日福建强降水过程进行了双雷达风场反演拼图资料检验及其三维变分同化对强降水精细预报影响的数值试验,结果发现:(1)动态地球坐标系下双雷达反演风场能合理反映实际风场分布状况,其误差相对较小。相较厦门翔安风廓线雷达及厦门探空秒级测风数据,反演风风向(风速)平均绝对误差分别为7.8°(2.6 m/s)及3.4°(1.1 m/s);(2)反演风场水平方向稀疏化对同化及预报结果极为重要,过密的反演风场资料会给同化及预报结果带来负效果。文中采用18、6、2 km 3重嵌套,在3重嵌套区域均进行同化以及仅在2 km区域进行同化两种情况下,均表现为当反演风场资料水平分辨率提高到0.1°时,同化分析及预报的台风环流开始受到负影响;且当反演风场资料水平分辨率越高时,负效果越明显。敏感性试验结果显示,分辨率取0.2°时数值预报效果最好;(3)以美国国家环境预报中心全球预报系统(National Centers for Environmental Prediction/Global Forecast System,NCEP/GFS)0.5°×0.5°分析场为初值,基于3个不同起报时刻(2016年9月14日14时、20时及15日02时)(北京时,下同)模拟的福建省境内台风内核雨带和螺旋雨带逐时演变、台风路径与强度、逐时降水TS评分和空间相关差异显著,其中14日14时起报试验效果最好;而14日20时起报试验效果最差,这与该试验初始台风大风轴风速明显偏大有关;(4)在上述3个不同起报时刻试验基础上,分别增加双雷达反演风场资料的三维变分同化后,福建境内地面风场和台风内核雨带、螺旋雨带逐时分布、逐时降水TS评分和空间相关、台风环流结构以及U、V风垂直廓线分布均有明显改善,最大正影响时效可达24 h;但仅对1—6 h时效内台风路径有改善。
利用福建龙岩、漳州、泉州新一代多普勒天气雷达和厦门海沧双偏振雷达探测资料,采用动态地球坐标系下双雷达三维风场反演与拼图技术,基于天气研究和预报模式(Weather Research and Forecasting,WRF)及其资料同化系统,对登陆台风“莫兰蒂”(1614)引起的2016年9月14—15日福建强降水过程进行了双雷达风场反演拼图资料检验及其三维变分同化对强降水精细预报影响的数值试验,结果发现:(1)动态地球坐标系下双雷达反演风场能合理反映实际风场分布状况,其误差相对较小。相较厦门翔安风廓线雷达及厦门探空秒级测风数据,反演风风向(风速)平均绝对误差分别为7.8°(2.6 m/s)及3.4°(1.1 m/s);(2)反演风场水平方向稀疏化对同化及预报结果极为重要,过密的反演风场资料会给同化及预报结果带来负效果。文中采用18、6、2 km 3重嵌套,在3重嵌套区域均进行同化以及仅在2 km区域进行同化两种情况下,均表现为当反演风场资料水平分辨率提高到0.1°时,同化分析及预报的台风环流开始受到负影响;且当反演风场资料水平分辨率越高时,负效果越明显。敏感性试验结果显示,分辨率取0.2°时数值预报效果最好;(3)以美国国家环境预报中心全球预报系统(National Centers for Environmental Prediction/Global Forecast System,NCEP/GFS)0.5°×0.5°分析场为初值,基于3个不同起报时刻(2016年9月14日14时、20时及15日02时)(北京时,下同)模拟的福建省境内台风内核雨带和螺旋雨带逐时演变、台风路径与强度、逐时降水TS评分和空间相关差异显著,其中14日14时起报试验效果最好;而14日20时起报试验效果最差,这与该试验初始台风大风轴风速明显偏大有关;(4)在上述3个不同起报时刻试验基础上,分别增加双雷达反演风场资料的三维变分同化后,福建境内地面风场和台风内核雨带、螺旋雨带逐时分布、逐时降水TS评分和空间相关、台风环流结构以及U、V风垂直廓线分布均有明显改善,最大正影响时效可达24 h;但仅对1—6 h时效内台风路径有改善。
{"title":"双雷达风场反演拼图在登陆台风“莫兰蒂”(1614)强降水精细预报中的同化应用试验","authors":"王叶红, 赵玉春, 罗昌荣, 韩颂雨","doi":"10.11676/QXXB2019.041","DOIUrl":"https://doi.org/10.11676/QXXB2019.041","url":null,"abstract":"利用福建龙岩、漳州、泉州新一代多普勒天气雷达和厦门海沧双偏振雷达探测资料,采用动态地球坐标系下双雷达三维风场反演与拼图技术,基于天气研究和预报模式(Weather Research and Forecasting,WRF)及其资料同化系统,对登陆台风“莫兰蒂”(1614)引起的2016年9月14—15日福建强降水过程进行了双雷达风场反演拼图资料检验及其三维变分同化对强降水精细预报影响的数值试验,结果发现:(1)动态地球坐标系下双雷达反演风场能合理反映实际风场分布状况,其误差相对较小。相较厦门翔安风廓线雷达及厦门探空秒级测风数据,反演风风向(风速)平均绝对误差分别为7.8°(2.6 m/s)及3.4°(1.1 m/s);(2)反演风场水平方向稀疏化对同化及预报结果极为重要,过密的反演风场资料会给同化及预报结果带来负效果。文中采用18、6、2 km 3重嵌套,在3重嵌套区域均进行同化以及仅在2 km区域进行同化两种情况下,均表现为当反演风场资料水平分辨率提高到0.1°时,同化分析及预报的台风环流开始受到负影响;且当反演风场资料水平分辨率越高时,负效果越明显。敏感性试验结果显示,分辨率取0.2°时数值预报效果最好;(3)以美国国家环境预报中心全球预报系统(National Centers for Environmental Prediction/Global Forecast System,NCEP/GFS)0.5°×0.5°分析场为初值,基于3个不同起报时刻(2016年9月14日14时、20时及15日02时)(北京时,下同)模拟的福建省境内台风内核雨带和螺旋雨带逐时演变、台风路径与强度、逐时降水TS评分和空间相关差异显著,其中14日14时起报试验效果最好;而14日20时起报试验效果最差,这与该试验初始台风大风轴风速明显偏大有关;(4)在上述3个不同起报时刻试验基础上,分别增加双雷达反演风场资料的三维变分同化后,福建境内地面风场和台风内核雨带、螺旋雨带逐时分布、逐时降水TS评分和空间相关、台风环流结构以及U、V风垂直廓线分布均有明显改善,最大正影响时效可达24 h;但仅对1—6 h时效内台风路径有改善。","PeriodicalId":50890,"journal":{"name":"Acta Meteorologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48028302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。
随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。
{"title":"基于极端随机树方法的WRF-CMAQ-MOS模型研究","authors":"黄丛吾, 陈报章, 马超群, 王体健","doi":"10.11676/qxxb2018.036","DOIUrl":"https://doi.org/10.11676/qxxb2018.036","url":null,"abstract":"随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM2.5、PM10、NO2、SO2、O3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO2及O3,2016年1、2、3月整体相关系数NO2由0.35升至0.63,O3由0.39升至0.79,均方根误差NO2由0.0346减至0.0243 mg/m3,O3由0.0447减至0.0367 mg/m3。文中发展的WRF-CMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。","PeriodicalId":50890,"journal":{"name":"Acta Meteorologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47132104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PM2.5 pollution remains the primary type of winter air pollution in Hubei Province, with obvious regional transmission characteristics. The meteorological conditions for air pollution during heavy pollution processes are different from those in North China, and are worth paying attention to. Using simulation results under different emission scenarios of WRF/Chem and combined with observation analysis, the meteorological transport conditions and daily variation characteristics of the PM2.5 heavy pollution process in Hubei Province from December 2015 to January 2016 were studied. The processes of horizontal transport, suspended aggregation, and downward transport of foreign pollutants were analyzed from the perspective of large-scale transport conditions and local boundary layer dynamics, and the meteorological causes of the observed afternoon PM2.5 concentration special peak in the region were explained. The results show that the outbreak of heavy pollution in Hubei is mainly caused by regional transmission. The ground observation PM2.5 extreme value corresponds to a wind speed of 8-10 m/s at 10 meters, and the boundary layer 0-1 km is a strong northerly wind transport. The extreme value of pollution transfer flux is located near a height of 400 meters, which is an important transmission channel. There is no obvious inversion in low altitude, and the heavy pollution process has "non-stationary" boundary layer meteorological characteristics. The large-scale transportation conditions for the formation of heavy pollution are as follows: abnormally strong northerly winds in the middle and lower reaches of the Yangtze River and the northern region, slow wind speeds in the southern region, causing pollutants to accumulate in the middle reaches of the plain. The higher the wind speed at the northern boundary of Hubei, the more favorable the growth of pollution transportation. Transmission pollution mainly comes from the transportation of pollution sources in the north and northeast directions, with potential source areas contributing mainly to the Yuzhong and Nanyang basins and Guanzhong regions passing through the north passage, as well as some areas such as Shandong, Anhui, and Jiangsu passing through the northeast passage. The weather causes of the bimodal structure of daily variation of PM2.5 concentration are different. The peak at 21-24 hours (Beijing time) is static pollution, and the peak at 11-14 hours is transport pollution. The transport of pollution is influenced by the height of the atmospheric boundary layer. Before sunrise, the height of the atmospheric boundary layer is relatively low, and the stratification is stable and accompanied by upward movement, causing low-level external transport to suspend and gather near a height of 400 meters; After sunrise, as the height of the atmospheric boundary layer increases, the static stable stratification is disrupted, and under the action of dry deposition, high concentration PM2.5 begins to transp
Based on the daily precipitation intensive observation data and NCEP/NCAR reanalysis data in China from 1981 to 2015, the case spectra of regional rainstorm processes in the east of 95 ° E and its six sub regions in China were established by combining subjective and objective methods, and the statistical characteristics of temporal and spatial distribution of regional rainstorm processes in the east of 95 ° E in China were further analyzed by using wavelet power spectrum, 9-point binomial smoothing and clustering of sum of squares of deviations. The results show that: (1) the average annual total number of regional rainstorm processes east of 95 ° E in China is close to 30; Among them, the Yangtze Huaihe River Basin is the sub region with the most regional rainstorm processes, with an average of 19 times/a; The second is the eastern part of South China and Southwest China, with an average of 10.5 and 5.8 times per year; The average frequency in Northeast China, North China, and the eastern part of Northwest China is only 1-3 times per year. (2) The annual and interdecadal variation of regional rainstorm process frequency in the east of China 95 ° E and its sub regions is mainly characterized by fluctuations. The annual and interdecadal fluctuations in the Yangtze Huaihe River basin in the sub regions are the most consistent with those in the east of China 95 ° E; The fluctuations in South China and Southwest China, as well as Northeast China and North China, are significantly positively correlated with each other. The annual total number of regional rainstorm processes east of 95 ° E in China and its sub regions all show a 2-4 year cycle. In addition, the Yangtze Huaihe River Basin, South China and the eastern part of Northwest China also show a 6-10 year cycle, while North China shows a 13-17 year cycle. (3) The regional rainstorm process east of 95 ° E in China is generally characterized by the distribution of the most in summer, the least in winter, and more in spring than in autumn, with the most occurrence in July. In each sub region, the regional rainstorm process in the Yangtze Huaihe River basin and the eastern part of southwest China is the most in June and July, and that in South China is the most in May and June; The eastern regions of Northeast China, North China, and Northwest China are concentrated in July and August. (4) The extreme regional rainstorm process in the area east of 95 ° E in China can be divided into 7 distribution types. The Type I-IV heavy rainfall areas gradually lift northward in a stepped pattern from the southern part of Jiangnan and South China to the eastern part of Huanghuai and Sichuan Basin. In addition to heavy rainfall areas along the southeast coast, Type V-VII is distributed from the eastern part of South China to Jianghuai, Type VI is distributed from the northern part of Huanghuai to the central and southern part of Northeast China, and Type VII is also distributed in the western part of Huanghuai and
利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19-20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300-200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展'移动'(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。
利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP(1°×1°)FNL资料、ECMWF ERA Interim(0.125°×0.125°)逐日再分析资料等,对造成2016年7月19-20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300-200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展'移动'(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。
Pub Date : 2013-12-01DOI: 10.1007/s13351-013-0609-6
Lijun Wang, Yan Yin, Zhanyu Yao, A. Sun
{"title":"Microphysical responses to catalysis during a stratocumulus aircraft seeding experiment over the Sanjiangyuan region of China","authors":"Lijun Wang, Yan Yin, Zhanyu Yao, A. Sun","doi":"10.1007/s13351-013-0609-6","DOIUrl":"https://doi.org/10.1007/s13351-013-0609-6","url":null,"abstract":"","PeriodicalId":50890,"journal":{"name":"Acta Meteorologica Sinica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13351-013-0609-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53380459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}