Automated Forearm Prosthesis Controlling Using Fiber Bragg Grating Sensor

Péricles Valera Rialto Júnior, E. H. Dureck, Alessandra Kalinowski, C. Zamarreño, A. B. Socorro-Leránoz, J. Silva, A. Lazzaretti, U. Dreyer
{"title":"Automated Forearm Prosthesis Controlling Using Fiber Bragg Grating Sensor","authors":"Péricles Valera Rialto Júnior, E. H. Dureck, Alessandra Kalinowski, C. Zamarreño, A. B. Socorro-Leránoz, J. Silva, A. Lazzaretti, U. Dreyer","doi":"10.1590/2179-10742023v22i1271724","DOIUrl":null,"url":null,"abstract":"Abstract This paper describes the automation of a forearm prosthesis using the signal collected by a Fiber Bragg Grating (FBG) sensor. The FBG sensor is applied to one subject's forearm to measure the deformation as a result of the index and middle fingers when moved individually. It is possible to control a one joint model prosthesis allied to a compliant hand mechanism through signal analyses. Each finger movement has its features, such as its amplitude, which opens the possibility of using those to control different parts of the prosthesis, joint rotation by the middle finger, and compliant hand movement by the index finger. This paper presents results regarding prosthesis assembling, Hypertext Transfer Protocol (HTTP) communication latency between prosthesis and computer and tests with pre-acquired and processed FBG signal data. The prosthesis wrist rotation movement is related to the middle finger signal, and its compliant mechanism actuation is due to index finger signal. The communication between prosthesis and the computer had a mean latency of 140 ms and a standard deviation of 18 ms. The results demonstrate the potential for using the sensor system and automated prosthesis in other applications involving real-time forearm sensing, multi-finger signal analysis, and prosthetic movement.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i1271724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper describes the automation of a forearm prosthesis using the signal collected by a Fiber Bragg Grating (FBG) sensor. The FBG sensor is applied to one subject's forearm to measure the deformation as a result of the index and middle fingers when moved individually. It is possible to control a one joint model prosthesis allied to a compliant hand mechanism through signal analyses. Each finger movement has its features, such as its amplitude, which opens the possibility of using those to control different parts of the prosthesis, joint rotation by the middle finger, and compliant hand movement by the index finger. This paper presents results regarding prosthesis assembling, Hypertext Transfer Protocol (HTTP) communication latency between prosthesis and computer and tests with pre-acquired and processed FBG signal data. The prosthesis wrist rotation movement is related to the middle finger signal, and its compliant mechanism actuation is due to index finger signal. The communication between prosthesis and the computer had a mean latency of 140 ms and a standard deviation of 18 ms. The results demonstrate the potential for using the sensor system and automated prosthesis in other applications involving real-time forearm sensing, multi-finger signal analysis, and prosthetic movement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光纤布拉格光栅传感器实现前臂假体的自动控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Journal of Microwaves, Optoelectronics and Electromagnetic Applications Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
24 weeks
期刊介绍: The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.
期刊最新文献
HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos. Assessment of the Illumination and Communication Performance of a Visible Light System in an Indoor Scenario Software-Defined Radio Applied to a Shielding Effectiveness Measurement Numerical Analysis of Plasmonic Couplers based on Metallic Lens Detection of Eyebolt Faults Using a Random Forest Ensemble Model Based on Multiple High-Frequency Electromagnetic Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1