Péricles Valera Rialto Júnior, E. H. Dureck, Alessandra Kalinowski, C. Zamarreño, A. B. Socorro-Leránoz, J. Silva, A. Lazzaretti, U. Dreyer
{"title":"Automated Forearm Prosthesis Controlling Using Fiber Bragg Grating Sensor","authors":"Péricles Valera Rialto Júnior, E. H. Dureck, Alessandra Kalinowski, C. Zamarreño, A. B. Socorro-Leránoz, J. Silva, A. Lazzaretti, U. Dreyer","doi":"10.1590/2179-10742023v22i1271724","DOIUrl":null,"url":null,"abstract":"Abstract This paper describes the automation of a forearm prosthesis using the signal collected by a Fiber Bragg Grating (FBG) sensor. The FBG sensor is applied to one subject's forearm to measure the deformation as a result of the index and middle fingers when moved individually. It is possible to control a one joint model prosthesis allied to a compliant hand mechanism through signal analyses. Each finger movement has its features, such as its amplitude, which opens the possibility of using those to control different parts of the prosthesis, joint rotation by the middle finger, and compliant hand movement by the index finger. This paper presents results regarding prosthesis assembling, Hypertext Transfer Protocol (HTTP) communication latency between prosthesis and computer and tests with pre-acquired and processed FBG signal data. The prosthesis wrist rotation movement is related to the middle finger signal, and its compliant mechanism actuation is due to index finger signal. The communication between prosthesis and the computer had a mean latency of 140 ms and a standard deviation of 18 ms. The results demonstrate the potential for using the sensor system and automated prosthesis in other applications involving real-time forearm sensing, multi-finger signal analysis, and prosthetic movement.","PeriodicalId":53567,"journal":{"name":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwaves, Optoelectronics and Electromagnetic Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2179-10742023v22i1271724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper describes the automation of a forearm prosthesis using the signal collected by a Fiber Bragg Grating (FBG) sensor. The FBG sensor is applied to one subject's forearm to measure the deformation as a result of the index and middle fingers when moved individually. It is possible to control a one joint model prosthesis allied to a compliant hand mechanism through signal analyses. Each finger movement has its features, such as its amplitude, which opens the possibility of using those to control different parts of the prosthesis, joint rotation by the middle finger, and compliant hand movement by the index finger. This paper presents results regarding prosthesis assembling, Hypertext Transfer Protocol (HTTP) communication latency between prosthesis and computer and tests with pre-acquired and processed FBG signal data. The prosthesis wrist rotation movement is related to the middle finger signal, and its compliant mechanism actuation is due to index finger signal. The communication between prosthesis and the computer had a mean latency of 140 ms and a standard deviation of 18 ms. The results demonstrate the potential for using the sensor system and automated prosthesis in other applications involving real-time forearm sensing, multi-finger signal analysis, and prosthetic movement.
期刊介绍:
The Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), published by the Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag), is a professional, refereed publication devoted to disseminating technical information in the areas of Microwaves, Optoelectronics, Photonics, and Electromagnetic Applications. Authors are invited to submit original work in one or more of the following topics. Electromagnetic Field Analysis[...] Computer Aided Design [...] Microwave Technologies [...] Photonic Technologies [...] Packaging, Integration and Test [...] Millimeter Wave Technologies [...] Electromagnetic Applications[...] Other Topics [...] Antennas [...] Articles in all aspects of microwave, optoelectronics, photonic devices and applications will be covered in the journal. All submitted papers will be peer-reviewed under supervision of the editors and the editorial board.