Event-triggered state estimation for complex networks under deception attacks: a partial-nodes-based approach

Lu Zhou, Bing Li
{"title":"Event-triggered state estimation for complex networks under deception attacks: a partial-nodes-based approach","authors":"Lu Zhou, Bing Li","doi":"10.20517/ces.2023.16","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of state estimation for a kind of complex network (CN) with distributed delays and random interference through output measurements. In the data transmission, the deception attacks are taken into account by resorting to a sequence of Bernoulli random variables with a given probability. Considering the complexity of the network, the fact that only partial output measurements are available in practical environments presents a new challenge. Therefore, the partial-nodes-based (PNB) state estimation problem is proposed. For the sake of data collision avoidance and energy saving, a general event-triggered scheme is adopted in the design of the estimator. A novel estimator is constructed to consider both cyber attacks and resource limitations, filling the gap in previous results on PNB state estimation. By using the Lyapunov method and several stochastic analysis techniques, a few sufficient conditions are derived to guarantee the desired security and convergency performance for the overall estimation error. The estimator gains are obtained by solving a set of matrix inequalities with nonlinear constraints. At last, two examples and simulations are presented to further show the efficiency of the proposed method.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2023.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the issue of state estimation for a kind of complex network (CN) with distributed delays and random interference through output measurements. In the data transmission, the deception attacks are taken into account by resorting to a sequence of Bernoulli random variables with a given probability. Considering the complexity of the network, the fact that only partial output measurements are available in practical environments presents a new challenge. Therefore, the partial-nodes-based (PNB) state estimation problem is proposed. For the sake of data collision avoidance and energy saving, a general event-triggered scheme is adopted in the design of the estimator. A novel estimator is constructed to consider both cyber attacks and resource limitations, filling the gap in previous results on PNB state estimation. By using the Lyapunov method and several stochastic analysis techniques, a few sufficient conditions are derived to guarantee the desired security and convergency performance for the overall estimation error. The estimator gains are obtained by solving a set of matrix inequalities with nonlinear constraints. At last, two examples and simulations are presented to further show the efficiency of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欺骗攻击下复杂网络的事件触发状态估计:一种基于部分节点的方法
本文通过输出测量来解决一类具有分布延迟和随机干扰的复杂网络的状态估计问题。在数据传输中,欺骗攻击通过采用具有给定概率的伯努利随机变量序列来考虑。考虑到网络的复杂性,在实际环境中只能获得部分输出测量这一事实提出了新的挑战。因此,提出了基于部分节点的状态估计问题。为了避免数据碰撞和节省能源,在估计器的设计中采用了通用的事件触发方案。构造了一种新的估计器,同时考虑网络攻击和资源限制,填补了以往PNB状态估计结果的空白。利用李雅普诺夫方法和几种随机分析技术,导出了保证总体估计误差具有所需安全性和收敛性的几个充分条件。估计增益是通过求解一组具有非线性约束的矩阵不等式来获得的。最后,通过两个算例和仿真,进一步验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Event-triggered model predictive tracking control of aero-engine with varying prediction horizon AWF-YOLO: enhanced underwater object detection with adaptive weighted feature pyramid network Model predictive control of multi-objective adaptive cruise system based on extension theory Event-triggered state estimation for complex networks under deception attacks: a partial-nodes-based approach Rolling bearing fault diagnosis method based on 2D grayscale images and Wasserstein Generative Adversarial Nets under unbalanced sample condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1