L. Dempwolff, C. Windt, N. Goseberg, T. Martin, H. Bihs, G. Melling
{"title":"Verification of a free-surface pressure term extension to represent ships in a non-hydrostatic shallow-water-equations solver","authors":"L. Dempwolff, C. Windt, N. Goseberg, T. Martin, H. Bihs, G. Melling","doi":"10.1115/1.4056121","DOIUrl":null,"url":null,"abstract":"\n In recent years, increasing ship-sizes and associated increasing wave loads have led to a demand for prediction tools quantifying the ship-induced loads on waterways. Depth-averaged numerical models, using a free surface pressure term, are a prominent method to obtain the relevant design parameters. These models incorporate the wave deformation processes due to attributes of complex bathymetries, while allowing for an efficient simulation of large computational domains. The non-hydrostatic shallow water equations model REEF3D::SFLOW uses a quadratic pressure approximation and high-order discretisation schemes. This paper presents the implementation of a pressure term to account for the displacement of the free surface by solid moving objects. Two test cases verifying the implementation are shown based upon the analytical one-dimensional solution of the wave propagation due to surface pressure and the estimation of Havelock angles. These verification tests are the first step towards a holistic model, combining a large scale model with CFD simulations near waterway banks.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, increasing ship-sizes and associated increasing wave loads have led to a demand for prediction tools quantifying the ship-induced loads on waterways. Depth-averaged numerical models, using a free surface pressure term, are a prominent method to obtain the relevant design parameters. These models incorporate the wave deformation processes due to attributes of complex bathymetries, while allowing for an efficient simulation of large computational domains. The non-hydrostatic shallow water equations model REEF3D::SFLOW uses a quadratic pressure approximation and high-order discretisation schemes. This paper presents the implementation of a pressure term to account for the displacement of the free surface by solid moving objects. Two test cases verifying the implementation are shown based upon the analytical one-dimensional solution of the wave propagation due to surface pressure and the estimation of Havelock angles. These verification tests are the first step towards a holistic model, combining a large scale model with CFD simulations near waterway banks.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.