Booster: a Benchmark for Depth from Images of Specular and Transparent Surfaces

IF 20.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Pattern Analysis and Machine Intelligence Pub Date : 2023-01-19 DOI:10.48550/arXiv.2301.08245
Pierluigi Zama Ramirez, Alex Costanzino, F. Tosi, Matteo Poggi, Samuele Salti, S. Mattoccia, L. D. Stefano
{"title":"Booster: a Benchmark for Depth from Images of Specular and Transparent Surfaces","authors":"Pierluigi Zama Ramirez, Alex Costanzino, F. Tosi, Matteo Poggi, Samuele Salti, S. Mattoccia, L. D. Stefano","doi":"10.48550/arXiv.2301.08245","DOIUrl":null,"url":null,"abstract":"Estimating depth from images nowadays yields outstanding results, both in terms of in-domain accuracy and generalization. However, we identify two main challenges that remain open in this field: dealing with non-Lambertian materials and effectively processing high-resolution images. Purposely, we propose a novel dataset that includes accurate and dense ground-truth labels at high resolution, featuring scenes containing several specular and transparent surfaces. Our acquisition pipeline leverages a novel deep space-time stereo framework, enabling easy and accurate labeling with sub-pixel precision. The dataset is composed of 606 samples collected in 85 different scenes, each sample includes both a high-resolution pair (12 Mpx) as well as an unbalanced stereo pair (Left: 12 Mpx, Right: 1.1 Mpx), typical of modern mobile devices that mount sensors with different resolutions. Additionally, we provide manually annotated material segmentation masks and 15K unlabeled samples. The dataset is composed of a train set and two test sets, the latter devoted to the evaluation of stereo and monocular depth estimation networks. Our experiments highlight the open challenges and future research directions in this field.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.08245","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Estimating depth from images nowadays yields outstanding results, both in terms of in-domain accuracy and generalization. However, we identify two main challenges that remain open in this field: dealing with non-Lambertian materials and effectively processing high-resolution images. Purposely, we propose a novel dataset that includes accurate and dense ground-truth labels at high resolution, featuring scenes containing several specular and transparent surfaces. Our acquisition pipeline leverages a novel deep space-time stereo framework, enabling easy and accurate labeling with sub-pixel precision. The dataset is composed of 606 samples collected in 85 different scenes, each sample includes both a high-resolution pair (12 Mpx) as well as an unbalanced stereo pair (Left: 12 Mpx, Right: 1.1 Mpx), typical of modern mobile devices that mount sensors with different resolutions. Additionally, we provide manually annotated material segmentation masks and 15K unlabeled samples. The dataset is composed of a train set and two test sets, the latter devoted to the evaluation of stereo and monocular depth estimation networks. Our experiments highlight the open challenges and future research directions in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
助推器:从镜面和透明表面的图像深度的基准
目前,从图像中估计深度在域内精度和泛化方面都取得了突出的结果。然而,我们发现了该领域仍然存在的两个主要挑战:处理非朗伯材料和有效处理高分辨率图像。有目的地,我们提出了一个新的数据集,该数据集包括高分辨率的精确和密集的地面实况标签,以包含几个镜面和透明表面的场景为特征。我们的采集管道利用了一种新颖的深空时立体框架,能够以亚像素精度轻松准确地进行标记。该数据集由在85个不同场景中收集的606个样本组成,每个样本包括高分辨率对(12Mpx)和不平衡立体声对(左:12Mpx,右:1.1Mpx),这是安装不同分辨率传感器的现代移动设备的典型特征。此外,我们还提供了手动注释的材料分割掩模和15K未标记的样本。该数据集由一个训练集和两个测试集组成,后者用于评估立体和单目深度估计网络。我们的实验突出了这一领域的公开挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.40
自引率
3.00%
发文量
885
审稿时长
8.5 months
期刊介绍: The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.
期刊最新文献
Streaming quanta sensors for online, high-performance imaging and vision FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels Partial Scene Text Retrieval BokehMe++: Harmonious Fusion of Classical and Neural Rendering for Versatile Bokeh Creation DiffI2I: Efficient Diffusion Model for Image-to-Image Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1