Separation of Crocin/Betanin Using Aqueous Two-phase Systems Containing Ionic Liquid and Sorbitol

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Chemical and Biochemical Engineering Quarterly Pub Date : 2022-07-26 DOI:10.15255/cabeq.2021.2038
Roozbeh Madadi, Shahla Shahriari, H. Mozafari
{"title":"Separation of Crocin/Betanin Using Aqueous Two-phase Systems Containing Ionic Liquid and Sorbitol","authors":"Roozbeh Madadi, Shahla Shahriari, H. Mozafari","doi":"10.15255/cabeq.2021.2038","DOIUrl":null,"url":null,"abstract":"Betanin and crocin, two food additives with attractive colors, are bioactive compounds of plants that are widely used in food, pharmaceutical, and medical industries. These bioactive pigments are sensitive to light, heat, organic solvents, and pH. It seems that a benign economic method is needed to extract these biomolecules, especially for industrial applications. The aqueous two-phase system (ATPS) is a liquid-liquid extraction technique that has shown its potential in recent years to extract and separate biomolecules. In this study, an ATPS consisting of carbohydrate (sorbitol) and ionic liquid (tetrabutyl phosphonium bromide) has been proposed as a new separation system with unique properties to study the partition coefficient of crocin and betanin. The results indicated that crocin and betanin had more tendency to the ionic liquid (IL)-rich phase and carbohydrate-rich phase, respectively. The influence of the concentration of IL and sorbitol on the partition coefficient was studied. The results showed that an increase in the tie-line length (concentrations) increased the partition coefficient of crocin and betanin. Enhancement in temperature increased the partition coefficient of crocin. The highest values of crocin recovery (97.55 %) and partition coefficient (39.85) at 308 K show that our proposed ATPS can be considered for crocin one step.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2021.2038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Betanin and crocin, two food additives with attractive colors, are bioactive compounds of plants that are widely used in food, pharmaceutical, and medical industries. These bioactive pigments are sensitive to light, heat, organic solvents, and pH. It seems that a benign economic method is needed to extract these biomolecules, especially for industrial applications. The aqueous two-phase system (ATPS) is a liquid-liquid extraction technique that has shown its potential in recent years to extract and separate biomolecules. In this study, an ATPS consisting of carbohydrate (sorbitol) and ionic liquid (tetrabutyl phosphonium bromide) has been proposed as a new separation system with unique properties to study the partition coefficient of crocin and betanin. The results indicated that crocin and betanin had more tendency to the ionic liquid (IL)-rich phase and carbohydrate-rich phase, respectively. The influence of the concentration of IL and sorbitol on the partition coefficient was studied. The results showed that an increase in the tie-line length (concentrations) increased the partition coefficient of crocin and betanin. Enhancement in temperature increased the partition coefficient of crocin. The highest values of crocin recovery (97.55 %) and partition coefficient (39.85) at 308 K show that our proposed ATPS can be considered for crocin one step.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子液体-山梨醇双水相体系分离Crocin/Betanin
Betanin和番红花素是两种颜色诱人的食品添加剂,是植物的生物活性化合物,广泛应用于食品、制药和医疗行业。这些生物活性颜料对光、热、有机溶剂和pH值敏感。似乎需要一种良性的经济方法来提取这些生物分子,尤其是在工业应用中。双水相系统(ATPS)是一种液-液萃取技术,近年来已显示出其提取和分离生物分子的潜力。在本研究中,提出了一种由碳水化合物(山梨醇)和离子液体(溴化四丁基鏻)组成的ATPS作为一种具有独特性质的新分离体系来研究番红花苷和甜菜碱的分配系数。结果表明,番红花苷和甜菜碱分别更倾向于富含离子液体和碳水化合物。研究了IL和山梨醇浓度对分配系数的影响。结果表明,连接线长度(浓度)的增加增加了番红花苷和甜菜碱的分配系数。温度的升高增加了番红花苷的分配系数。在308K下番红花苷的最高回收率(97.55%)和分配系数(39.85)表明,我们提出的番红花苷ATPS可以一步到位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
期刊最新文献
Influence of Reaction Parameters and Feedstock Type on the Synthesis of Fatty Acid Propyl, Butyl, Isobutyl, Pentyl, and Isopentyl Esters Effect of Silver Addition on Cu-based Shape Memory Alloys Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel Amoxicillin Biodegradation with Bacillus subtilis and Pseudomonas aeruginosa: Characterization of Relevant Degradation Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1