Fast and Robust Parameter Estimation in the Application of Fuzzy Logistic Equations in Population Growth

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2019-07-31 DOI:10.11113/MATEMATIKA.V35.N2.1164
N. Izzah, Y. Hoe, N. Maan
{"title":"Fast and Robust Parameter Estimation in the Application of Fuzzy Logistic Equations in Population Growth","authors":"N. Izzah, Y. Hoe, N. Maan","doi":"10.11113/MATEMATIKA.V35.N2.1164","DOIUrl":null,"url":null,"abstract":"In this paper, extended Runge-Kutta fourth order method for directly solving the fuzzy logistic problem is presented. The extended Runge-Kutta method has lower number of function evaluations, compared with the classical Runge-Kutta method. The numerical robustness of the method in parameter estimation is enhanced via error minimization in predicting growth rate and carrying capacity. The results of fuzzy logistic model with the estimated parameters have been compared with population growth data in Malaysia, which indicate that this method is more accurate that the data population. Numerical example is given to illustrate the efficiency of the proposed model. It is concluded that robust parameter estimation technique is efficient in modelling population growth.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, extended Runge-Kutta fourth order method for directly solving the fuzzy logistic problem is presented. The extended Runge-Kutta method has lower number of function evaluations, compared with the classical Runge-Kutta method. The numerical robustness of the method in parameter estimation is enhanced via error minimization in predicting growth rate and carrying capacity. The results of fuzzy logistic model with the estimated parameters have been compared with population growth data in Malaysia, which indicate that this method is more accurate that the data population. Numerical example is given to illustrate the efficiency of the proposed model. It is concluded that robust parameter estimation technique is efficient in modelling population growth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊Logistic方程在人口增长中的快速鲁棒参数估计
本文给出了直接求解模糊逻辑问题的扩展龙格-库塔四阶方法。与经典龙格-库塔方法相比,扩展龙格-库塔方法的函数求值次数更少。通过最小化预测增长率和承载能力的误差,增强了该方法在参数估计中的数值鲁棒性。用估计参数建立的模糊logistic模型的结果与马来西亚的人口增长数据进行了比较,结果表明该方法比数据人口更准确。算例说明了该模型的有效性。结果表明,鲁棒参数估计技术在模拟种群增长方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1