{"title":"Real-world sentence boundary detection using multitask learning: A case study on French","authors":"Kyungtae Lim, Jungyeul Park","doi":"10.1017/s1351324922000134","DOIUrl":null,"url":null,"abstract":"\n We propose a novel approach for sentence boundary detection in text datasets in which boundaries are not evident (e.g., sentence fragments). Although detecting sentence boundaries without punctuation marks has rarely been explored in written text, current real-world textual data suffer from widespread lack of proper start/stop signaling. Herein, we annotate a dataset with linguistic information, such as parts of speech and named entity labels, to boost the sentence boundary detection task. Via experiments, we obtained F1 scores up to 98.07% using the proposed multitask neural model, including a score of 89.41% for sentences completely lacking punctuation marks. We also present an ablation study and provide a detailed analysis to demonstrate the effectiveness of the proposed multitask learning method.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324922000134","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a novel approach for sentence boundary detection in text datasets in which boundaries are not evident (e.g., sentence fragments). Although detecting sentence boundaries without punctuation marks has rarely been explored in written text, current real-world textual data suffer from widespread lack of proper start/stop signaling. Herein, we annotate a dataset with linguistic information, such as parts of speech and named entity labels, to boost the sentence boundary detection task. Via experiments, we obtained F1 scores up to 98.07% using the proposed multitask neural model, including a score of 89.41% for sentences completely lacking punctuation marks. We also present an ablation study and provide a detailed analysis to demonstrate the effectiveness of the proposed multitask learning method.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.