Extending Deep Rhythm for Tempo and Genre Estimation Using Complex Convolutions, Multitask Learning and Multi-input Network

Q2 Arts and Humanities Journal of Creative Music Systems Pub Date : 2022-03-04 DOI:10.5920/jcms.887
Hadrien Foroughmand Aarabi, G. Peeters
{"title":"Extending Deep Rhythm for Tempo and Genre Estimation Using Complex Convolutions, Multitask Learning and Multi-input Network","authors":"Hadrien Foroughmand Aarabi, G. Peeters","doi":"10.5920/jcms.887","DOIUrl":null,"url":null,"abstract":"Tempo and genre are two inter-leaved aspects of music, genres are often associated to rhythm patterns which are played in specific tempo ranges.In this paper, we focus on the Deep Rhythm system based on a harmonic representation of rhythm used as an input to a convolutional neural network.To consider the relationships between frequency bands, we process complex-valued inputs through complex-convolutions.We also study the joint estimation of tempo/genre using a multitask learning approach. Finally, we study the addition of a second input convolutional branch to the system applied to a mel-spectrogram input dedicated to the timbre.This multi-input approach allows to improve the performances for tempo and genre estimation.","PeriodicalId":52272,"journal":{"name":"Journal of Creative Music Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Creative Music Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5920/jcms.887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Tempo and genre are two inter-leaved aspects of music, genres are often associated to rhythm patterns which are played in specific tempo ranges.In this paper, we focus on the Deep Rhythm system based on a harmonic representation of rhythm used as an input to a convolutional neural network.To consider the relationships between frequency bands, we process complex-valued inputs through complex-convolutions.We also study the joint estimation of tempo/genre using a multitask learning approach. Finally, we study the addition of a second input convolutional branch to the system applied to a mel-spectrogram input dedicated to the timbre.This multi-input approach allows to improve the performances for tempo and genre estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用复数卷积、多任务学习和多输入网络扩展Tempo和Genre估计的深度节奏
节奏和体裁是音乐的两个相互交错的方面,体裁通常与在特定速度范围内演奏的节奏模式有关。在本文中,我们将重点放在深度节奏系统上,该系统基于节奏的谐波表示,用作卷积神经网络的输入。为了考虑频带之间的关系,我们通过复卷积处理复值输入。我们还使用多任务学习方法研究了节奏/体裁的联合估计。最后,我们研究了将第二个输入卷积分支添加到系统中,并将其应用于专用于音色的梅尔谱输入。这种多输入方法可以提高速度和类型估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Creative Music Systems
Journal of Creative Music Systems Arts and Humanities-Music
CiteScore
1.20
自引率
0.00%
发文量
8
审稿时长
12 weeks
期刊最新文献
Title Pending 1311 Oktoechos Classification and Generation of Liturgical Music using Deep Learning Frameworks Editorial: JCMS Special Issue of the first Conference on AI Music Creativity Contemporary music genre rhythm generation with machine learning Deep Music Information Dynamics Novel Framework for Reduced Neural-Network Music Representation with Applications to Midi and Audio Analysis and Improvisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1