{"title":"Genome-Wide Investigation of Knotted Related Homeobox Genes and Identification of a Fiber-Growth-Repressed Knotted Related Homeobox Gene in Ramie","authors":"Jianrong Chen, Xueyu Zhang, Fang Liu, Chang Liu, Yinghong Tang, Chunyan Li, Yuan Gong, Xiaojiang Xu, Yanzhou Wang, Toumin Liu","doi":"10.3390/agronomy13092297","DOIUrl":null,"url":null,"abstract":"The KNOX transcription factor plays crucial roles in regulating fiber growth in plants. Although the genome of ramie, an important fiber crop in China, is available, knotted related homeobox (KNOX) genes have not been systematically explored in this crop. In this study, seven members of the KNOX gene from the ramie genome were identified and assigned to two groups, Class I and II. The intron–exon structure, conserved domain architecture, cis-regulating elements, and expression pattern showed distinct differences among the seven KNOX regulators. One of the genes, Bnt07G011994, encodes an ortholog of Arabidopsis fiber-growth-related KNAT7, and is differentially expressed among barks undergoing different stages of fiber growth. The overexpression of Bnt07G011994 dramatically decreases the fiber number in transgenic Arabidopsis, indicating a negative role played by this gene in modulating fiber growth. Further transcriptome analysis of transgenic Arabidopsis revealed that the overexpression of Bnt07G011994 resulted in an expression change in 14 pectin biosynthesis-/metabolism-related genes. These findings provide a useful foundation for further investigating the function of KNOX genes in ramie, and provide an important insight into the involvement of the ramie KNOX gene in fiber growth.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092297","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The KNOX transcription factor plays crucial roles in regulating fiber growth in plants. Although the genome of ramie, an important fiber crop in China, is available, knotted related homeobox (KNOX) genes have not been systematically explored in this crop. In this study, seven members of the KNOX gene from the ramie genome were identified and assigned to two groups, Class I and II. The intron–exon structure, conserved domain architecture, cis-regulating elements, and expression pattern showed distinct differences among the seven KNOX regulators. One of the genes, Bnt07G011994, encodes an ortholog of Arabidopsis fiber-growth-related KNAT7, and is differentially expressed among barks undergoing different stages of fiber growth. The overexpression of Bnt07G011994 dramatically decreases the fiber number in transgenic Arabidopsis, indicating a negative role played by this gene in modulating fiber growth. Further transcriptome analysis of transgenic Arabidopsis revealed that the overexpression of Bnt07G011994 resulted in an expression change in 14 pectin biosynthesis-/metabolism-related genes. These findings provide a useful foundation for further investigating the function of KNOX genes in ramie, and provide an important insight into the involvement of the ramie KNOX gene in fiber growth.
Agronomy-BaselAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍:
Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.