Neural-logic multi-agent system for flood event detection

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligenza Artificiale Pub Date : 2023-06-07 DOI:10.3233/IA-230004
Andrea Rafanelli, S. Costantini, Giovanni De Gasperis
{"title":"Neural-logic multi-agent system for flood event detection","authors":"Andrea Rafanelli, S. Costantini, Giovanni De Gasperis","doi":"10.3233/IA-230004","DOIUrl":null,"url":null,"abstract":" This paper shows the capabilities offered by an integrated neural-logic multi-agent system (MAS). Our case study encompasses logical agents and a deep learning (DL) component, to devise a system specialised in monitoring flood events for civil protection purposes. More precisely, we describe a prototypical framework consisting of a set of intelligent agents, which perform various tasks and communicate with each other to efficiently generate alerts during flood crisis events. Alerts are only delivered when at least two separates sources agree on an event on the same zone, i.e. aerial images and severe weather reports. Images are segmented by a neural network trained over eight classes of topographical entities. The resulting mask is analysed by a Logic Image Descriptor (LID) which then submit the perception to a logical agent.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"17 1","pages":"19-35"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/IA-230004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

 This paper shows the capabilities offered by an integrated neural-logic multi-agent system (MAS). Our case study encompasses logical agents and a deep learning (DL) component, to devise a system specialised in monitoring flood events for civil protection purposes. More precisely, we describe a prototypical framework consisting of a set of intelligent agents, which perform various tasks and communicate with each other to efficiently generate alerts during flood crisis events. Alerts are only delivered when at least two separates sources agree on an event on the same zone, i.e. aerial images and severe weather reports. Images are segmented by a neural network trained over eight classes of topographical entities. The resulting mask is analysed by a Logic Image Descriptor (LID) which then submit the perception to a logical agent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洪水事件检测的神经逻辑多智能体系统
本文展示了集成神经逻辑多智能体系统(MAS)所提供的功能。我们的案例研究包括逻辑代理和深度学习(DL)组件,以设计一个专门用于监测民事保护目的的洪水事件的系统。更准确地说,我们描述了一个由一组智能代理组成的原型框架,这些智能代理执行各种任务并相互通信,以在洪水危机事件期间有效地生成警报。只有当至少两个独立的来源就同一区域的事件达成一致时,即航空图像和恶劣天气报告,才会发出警报。通过在八类地形实体上训练的神经网络对图像进行分割。通过逻辑图像描述符(LID)分析得到的掩模,然后将感知提交给逻辑代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
期刊最新文献
Special Issue NL4AI 2022: Workshop on natural language for artificial intelligence User-centric item characteristics for personalized multimedia systems: A systematic review Combining human intelligence and machine learning for fact-checking: Towards a hybrid human-in-the-loop framework A framework for safe decision making: A convex duality approach Grounding End-to-End Pre-trained architectures for Semantic Role Labeling in multiple languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1