Investigating the Electrochemical Properties of Alkaloids Compound Derived from Catharanthus Roseus Extract

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2023-07-31 DOI:10.4028/p-yBmV9q
Marwah Al-Azzawi, W. R. Saleh
{"title":"Investigating the Electrochemical Properties of Alkaloids Compound Derived from Catharanthus Roseus Extract","authors":"Marwah Al-Azzawi, W. R. Saleh","doi":"10.4028/p-yBmV9q","DOIUrl":null,"url":null,"abstract":"The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that the P=O is the cross-linkage between chitosan and phosphate groups by ionic bond, which indicate that the Chitosan nanoparticle has been formed in the solution. FTIR spectrum for CSNPs - Linker - alkaloids appear a new distinct band at 1708.93 cm-1 which demonstrates the presence of C = O esterification. Atomic Force Microscope images of the Chitosan nanoparticles and CSNPs-Linker-alkaloids show that they have almost spherical shapes with average sizes of 90 and 92.6 nm respectively. The electroactive surface area of glassy carbon electrodes (GCE), extract plant, and Linker-alkaloids were calculated in KCl solution containing K3[Fe (CN)6]. The presence of CSNPs-Linker-alkaloids in modified glassy carbon electrodes about 3 times. The successful synthesis of organic nanoparticles from the Catharanthus roseus plant can be used safely in biosensors, environmental monitoring, and biomedical applications.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"61 1","pages":"93 - 107"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-yBmV9q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that the P=O is the cross-linkage between chitosan and phosphate groups by ionic bond, which indicate that the Chitosan nanoparticle has been formed in the solution. FTIR spectrum for CSNPs - Linker - alkaloids appear a new distinct band at 1708.93 cm-1 which demonstrates the presence of C = O esterification. Atomic Force Microscope images of the Chitosan nanoparticles and CSNPs-Linker-alkaloids show that they have almost spherical shapes with average sizes of 90 and 92.6 nm respectively. The electroactive surface area of glassy carbon electrodes (GCE), extract plant, and Linker-alkaloids were calculated in KCl solution containing K3[Fe (CN)6]. The presence of CSNPs-Linker-alkaloids in modified glassy carbon electrodes about 3 times. The successful synthesis of organic nanoparticles from the Catharanthus roseus plant can be used safely in biosensors, environmental monitoring, and biomedical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
花楸花提取物生物碱类化合物的电化学性质研究
本研究从玫瑰花植物中提取并转化成纳米颗粒。采用索氏法从玫瑰花植物中提取生物碱化合物,并将其转化为纳米级化合物。以壳聚糖聚合物为连接材料,制备壳聚糖纳米颗粒(csnp)。将提取的生物碱用马来酸酐与壳聚糖纳米颗粒进行连接,得到最终产物(csnp - linklink -生物碱)。利用x射线衍射仪和傅里叶变换红外光谱对壳聚糖、壳聚糖纳米颗粒和csnp - link-生物碱进行了表征。x射线结果表明,所有样品均具有纳米尺寸的晶型正交结构。FTIR光谱证明,P=O是壳聚糖与磷酸基团通过离子键的交联,表明壳聚糖纳米颗粒在溶液中已经形成。CSNPs - Linker -生物碱的FTIR光谱在1708.93 cm-1处出现了一个新的明显的条带,表明存在C = O酯化反应。壳聚糖纳米粒子和csnp - link-生物碱的原子力显微镜图像显示,它们的平均尺寸分别为90 nm和92.6 nm,几乎为球形。在含K3[Fe (CN)6]的KCl溶液中,计算了玻碳电极(GCE)、萃取物和林克生物碱的电活性表面积。csnp - link -生物碱在修饰过的玻碳电极上存在约3次。从玫瑰花植物中成功合成的有机纳米颗粒可安全用于生物传感器、环境监测和生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound Effect of Plant Oil Derived Bio-Resin and Curing Temperature on Static and Dynamic Mechanical Properties of Epoxy Network Active Rehabilitation Gloves Based on Brain-Computer Interfaces and Deep Learning <i>In Vitro</i> Study: Bioactivity, Biocompatibility and Antibacterial Behavior for Polyetheretherketone Composites Synthesis of Colloidal Silver Nanoparticles Using Alginate as Reducing and Stabilizing Agents and its Application as Antibacterial Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1