Model of fractional-order resonant wireless power transfer system for optimal output

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrical Engineering-elektrotechnicky Casopis Pub Date : 2022-08-01 DOI:10.2478/jee-2022-0034
Ravneel Prasad, K. Sharma, Bhavish Gulabdas, U. Mehta
{"title":"Model of fractional-order resonant wireless power transfer system for optimal output","authors":"Ravneel Prasad, K. Sharma, Bhavish Gulabdas, U. Mehta","doi":"10.2478/jee-2022-0034","DOIUrl":null,"url":null,"abstract":"Abstract Wireless Power Transfer (WPT) technology has recently gained popularity in applications and research topics. It enables the transfer of electrical energy from a source to a load without connecting wires physically. The WPT system is commonly studied classically using integer order capacitors and inductors. Nonetheless, such integer order based systems have drawbacks, such as low output power, poor transmission efficiency and sensitivity to parameter variations. This paper proposes a fractional order resonant WPT circuit whereby both the transmitting and receiving ends are composed of a fractional capacitor and inductor to overcome such problems. In this paper, the overall performance is studied based on its output power and efficiency considering a series-parallel topology. The effect of fractional order in fractal elements will be analyzed to observe the optimal combination of components to achieve the maximum output power with higher efficiency. Through a comparative analysis of the results, several combinations of circuit parameters can provide a theoretical understanding for implementing an experimental system.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"258 - 266"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Wireless Power Transfer (WPT) technology has recently gained popularity in applications and research topics. It enables the transfer of electrical energy from a source to a load without connecting wires physically. The WPT system is commonly studied classically using integer order capacitors and inductors. Nonetheless, such integer order based systems have drawbacks, such as low output power, poor transmission efficiency and sensitivity to parameter variations. This paper proposes a fractional order resonant WPT circuit whereby both the transmitting and receiving ends are composed of a fractional capacitor and inductor to overcome such problems. In this paper, the overall performance is studied based on its output power and efficiency considering a series-parallel topology. The effect of fractional order in fractal elements will be analyzed to observe the optimal combination of components to achieve the maximum output power with higher efficiency. Through a comparative analysis of the results, several combinations of circuit parameters can provide a theoretical understanding for implementing an experimental system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数阶谐振无线电力传输系统最优输出模型
摘要无线功率传输(WPT)技术近年来在应用和研究方面都获得了广泛的关注。它使电能从电源传输到负载,而不需要物理连接电线。WPT系统的经典研究通常使用整数阶电容和电感。然而,这种基于整数阶的系统有缺点,如输出功率低,传输效率差,对参数变化敏感。本文提出了一种分数阶谐振WPT电路,其发射端和接收端均由分数阶电容和电感组成。本文在考虑串并联拓扑结构的基础上,从输出功率和效率两方面对其整体性能进行了研究。分析分形要素中分数阶的影响,观察各要素的最优组合,以获得更高效率的最大输出功率。通过对结果的比较分析,几种电路参数的组合可以为实验系统的实现提供理论认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
期刊最新文献
Elementary design and analysis of QCA-based T-flipflop for nanocomputing Model-free predictive current control of Syn-RM based on time delay estimation approach Design of a battery charging system fed by thermoelectric generator panels using MPPT techniques Methods of computer modeling of electromagnetic field propagation in urban scenarios for Internet of Things Precision of sinewave amplitude estimation in the presence of additive noise and quantization error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1