Ravneel Prasad, K. Sharma, Bhavish Gulabdas, U. Mehta
{"title":"Model of fractional-order resonant wireless power transfer system for optimal output","authors":"Ravneel Prasad, K. Sharma, Bhavish Gulabdas, U. Mehta","doi":"10.2478/jee-2022-0034","DOIUrl":null,"url":null,"abstract":"Abstract Wireless Power Transfer (WPT) technology has recently gained popularity in applications and research topics. It enables the transfer of electrical energy from a source to a load without connecting wires physically. The WPT system is commonly studied classically using integer order capacitors and inductors. Nonetheless, such integer order based systems have drawbacks, such as low output power, poor transmission efficiency and sensitivity to parameter variations. This paper proposes a fractional order resonant WPT circuit whereby both the transmitting and receiving ends are composed of a fractional capacitor and inductor to overcome such problems. In this paper, the overall performance is studied based on its output power and efficiency considering a series-parallel topology. The effect of fractional order in fractal elements will be analyzed to observe the optimal combination of components to achieve the maximum output power with higher efficiency. Through a comparative analysis of the results, several combinations of circuit parameters can provide a theoretical understanding for implementing an experimental system.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"258 - 266"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Wireless Power Transfer (WPT) technology has recently gained popularity in applications and research topics. It enables the transfer of electrical energy from a source to a load without connecting wires physically. The WPT system is commonly studied classically using integer order capacitors and inductors. Nonetheless, such integer order based systems have drawbacks, such as low output power, poor transmission efficiency and sensitivity to parameter variations. This paper proposes a fractional order resonant WPT circuit whereby both the transmitting and receiving ends are composed of a fractional capacitor and inductor to overcome such problems. In this paper, the overall performance is studied based on its output power and efficiency considering a series-parallel topology. The effect of fractional order in fractal elements will be analyzed to observe the optimal combination of components to achieve the maximum output power with higher efficiency. Through a comparative analysis of the results, several combinations of circuit parameters can provide a theoretical understanding for implementing an experimental system.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications