{"title":"Dual solutions for heat and mass transfer in chemically reacting radiative non-Newtonian fluid with aligned magnetic field","authors":"J. V. R. Reddy, V. Sugunamma, N. Sandeep","doi":"10.3329/JNAME.V14I1.25907","DOIUrl":null,"url":null,"abstract":"Through this paper we investigated the heat and mass transfer in chemically reacting radiative Casson fluid flow over a slandering/flat stretching sheet in a slip flow regime with aligned magnetic field. This study is carried out under the influence of non uniform heat source/sink. First we converted the governing equations of the flow into ordinary differential equations by making use of suitable similarity transformations. The obtained non-linear differential equations are solved numerically using Runge-Kutta based shooting technique. Further, graphical representation has been given to study the effects of various physical parameters on velocity, temperature and concentration fields. Also numerical computations has been carried out to investigate the influence of the physical parameters involved in the flow on skin friction, rate of heat and mass transfer coefficients. Through this investigation, it is observed that aligned angle, Casson parameter and velocity slip parameter have the tendency to control the velocity field. Also heat transfer rate in flat stretching sheet is higher than that of slendering stretching sheet. A good agreement of the present results with the existed literature has been observed.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"14 1","pages":"25-38"},"PeriodicalIF":1.2000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I1.25907","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I1.25907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 9
Abstract
Through this paper we investigated the heat and mass transfer in chemically reacting radiative Casson fluid flow over a slandering/flat stretching sheet in a slip flow regime with aligned magnetic field. This study is carried out under the influence of non uniform heat source/sink. First we converted the governing equations of the flow into ordinary differential equations by making use of suitable similarity transformations. The obtained non-linear differential equations are solved numerically using Runge-Kutta based shooting technique. Further, graphical representation has been given to study the effects of various physical parameters on velocity, temperature and concentration fields. Also numerical computations has been carried out to investigate the influence of the physical parameters involved in the flow on skin friction, rate of heat and mass transfer coefficients. Through this investigation, it is observed that aligned angle, Casson parameter and velocity slip parameter have the tendency to control the velocity field. Also heat transfer rate in flat stretching sheet is higher than that of slendering stretching sheet. A good agreement of the present results with the existed literature has been observed.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.