An Improved MobileNet for Disease Detection on Tomato Leaves

H. Nguyen, H. H. Luong, Long Bao Huynh, Bao Quoc, Hoang Le, N. H. Doan, Duc Thien, Dao Le
{"title":"An Improved MobileNet for Disease Detection on Tomato Leaves","authors":"H. Nguyen, H. H. Luong, Long Bao Huynh, Bao Quoc, Hoang Le, N. H. Doan, Duc Thien, Dao Le","doi":"10.46604/aiti.2023.11568","DOIUrl":null,"url":null,"abstract":"Tomatoes are widely grown vegetables, and farmers face challenges in caring for them, particularly regarding plant diseases. The MobileNet architecture is renowned for its simplicity and compatibility with mobile devices. This study introduces MobileNet as a deep learning model to enhance disease detection efficiency in tomato plants. The model is evaluated on a dataset of 2,064 tomato leaf images, encompassing early blight, leaf spot, yellow curl, and healthy leaves. Results demonstrate promising accuracy, exceeding 0.980 for disease classification and 0.975 for distinguishing between diseases and healthy cases. Moreover, the proposed model outperforms existing approaches in terms of accuracy and training time for plant leaf disease detection.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.11568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Tomatoes are widely grown vegetables, and farmers face challenges in caring for them, particularly regarding plant diseases. The MobileNet architecture is renowned for its simplicity and compatibility with mobile devices. This study introduces MobileNet as a deep learning model to enhance disease detection efficiency in tomato plants. The model is evaluated on a dataset of 2,064 tomato leaf images, encompassing early blight, leaf spot, yellow curl, and healthy leaves. Results demonstrate promising accuracy, exceeding 0.980 for disease classification and 0.975 for distinguishing between diseases and healthy cases. Moreover, the proposed model outperforms existing approaches in terms of accuracy and training time for plant leaf disease detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的番茄叶片病害检测移动网络
番茄是一种广泛种植的蔬菜,农民在照顾番茄方面面临挑战,尤其是在植物病害方面。MobileNet架构以其简单性和与移动设备的兼容性而闻名。本研究引入MobileNet作为一种深度学习模型,以提高番茄植株的疾病检测效率。该模型是在2064张番茄叶片图像的数据集上进行评估的,包括早疫病、叶斑、黄色卷曲和健康叶片。结果表明,疾病分类的准确性很有希望,超过0.980,区分疾病和健康病例的准确性超过0.975。此外,所提出的模型在植物叶病检测的准确性和训练时间方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Synthesis and Characterization of Phase Change Microcapsules Containing Nano-Graphite Challenges and Solutions to Criminal Liability for the Actions of Robots and AI Selection of Elevation Models for Flood Inundation Map Generation in Small Urban Stream: Case Study of Anyang Stream Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny The Prediction of Low-Rise Building Construction Cost Estimation Using Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1