Hartmann and Reynolds Numbers Effects in the Newtonian Blood Flow of a Bifurcated Artery with an Overlapping Stenosis

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2019-07-31 DOI:10.11113/MATEMATIKA.V35.N2.1177
Norliza Mohd Zain, Z. Ismail
{"title":"Hartmann and Reynolds Numbers Effects in the Newtonian Blood Flow of a Bifurcated Artery with an Overlapping Stenosis","authors":"Norliza Mohd Zain, Z. Ismail","doi":"10.11113/MATEMATIKA.V35.N2.1177","DOIUrl":null,"url":null,"abstract":"Abstract Blood flow through a bifurcated artery with the presence of an overlapping stenosis located at parent’s arterial lumen under the action of a uniform external magnetic field is studied in this paper. Blood is treated as an electrically conducting fluid which exhibits the Magnetohydrodynamics principle and it is characterized by a Newtonian fluid model. The governing equations are discretized using a stabilization technique of finite element known as Galerkin least-squares. The maximum velocity and pressure drop evaluated in this present study are compared with the results found in previous literature and COMSOL Multiphysics. The solutions found in a satisfactory agreement, thus verify the source code is working properly. The effects of dimensionless parameters of Hartmann and Reynolds numbers in the fluid’s velocity and pressure are examined in details with further scientific discussions.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Blood flow through a bifurcated artery with the presence of an overlapping stenosis located at parent’s arterial lumen under the action of a uniform external magnetic field is studied in this paper. Blood is treated as an electrically conducting fluid which exhibits the Magnetohydrodynamics principle and it is characterized by a Newtonian fluid model. The governing equations are discretized using a stabilization technique of finite element known as Galerkin least-squares. The maximum velocity and pressure drop evaluated in this present study are compared with the results found in previous literature and COMSOL Multiphysics. The solutions found in a satisfactory agreement, thus verify the source code is working properly. The effects of dimensionless parameters of Hartmann and Reynolds numbers in the fluid’s velocity and pressure are examined in details with further scientific discussions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重叠狭窄的分叉动脉牛顿血流中的哈特曼和雷诺数效应
摘要本文研究了在均匀外磁场作用下,动脉腔内存在重叠狭窄的分支动脉的血流。血液被视为一种导电流体,它表现出磁流体力学原理,并具有牛顿流体模型的特征。采用一种称为伽辽金最小二乘的有限元稳定技术对控制方程进行离散化。本研究评估的最大流速和压降与先前文献和COMSOL Multiphysics的结果进行了比较。找到了满意的解决方案,从而验证了源代码是否正常工作。对无量纲参数哈特曼数和雷诺数对流体速度和压力的影响进行了详细的研究,并进行了进一步的科学讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1