Verification of pattern unlock and gait behavioural authentication through a machine learning approach

G. Chaitanya, Krovi Raja Sekhar
{"title":"Verification of pattern unlock and gait behavioural authentication through a machine learning approach","authors":"G. Chaitanya, Krovi Raja Sekhar","doi":"10.36872/lepi/v51i2/301131","DOIUrl":null,"url":null,"abstract":"PurposeThe existing authentication procedures (pin, pattern, password) are not very secure. Therefore, the Gait pattern authentication scheme is introduced to verify the own user. The current research proposes a running Gaussian grey wolf boosting (RGGWB) model to recognize the owner.Design/methodology/approachThe biometrics system plays an important role in smartphones in securing confidential data stored in them. Moreover, the authentication schemes such as passwords and patterns are widely used in smartphones.FindingsTo validate this research model, the unauthenticated user's Gait was trained and tested simultaneously with owner gaits. Furthermore, if the gait matches, the smartphone unlocks automatically; otherwise, it rejects it.Originality/valueFinally, the effectiveness of the proposed model is proved by attaining better accuracy and less error rate.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36872/lepi/v51i2/301131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 4

Abstract

PurposeThe existing authentication procedures (pin, pattern, password) are not very secure. Therefore, the Gait pattern authentication scheme is introduced to verify the own user. The current research proposes a running Gaussian grey wolf boosting (RGGWB) model to recognize the owner.Design/methodology/approachThe biometrics system plays an important role in smartphones in securing confidential data stored in them. Moreover, the authentication schemes such as passwords and patterns are widely used in smartphones.FindingsTo validate this research model, the unauthenticated user's Gait was trained and tested simultaneously with owner gaits. Furthermore, if the gait matches, the smartphone unlocks automatically; otherwise, it rejects it.Originality/valueFinally, the effectiveness of the proposed model is proved by attaining better accuracy and less error rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习方法验证模式解锁和步态行为认证
目的现有的身份验证程序(pin、模式、密码)不是很安全。因此,引入步态模式认证方案来验证自己的用户。目前的研究提出了一种运行高斯灰狼提升(RGGWB)模型来识别所有者。设计/方法/方法生物识别系统在智能手机中保护存储在其中的机密数据方面发挥着重要作用。此外,密码和模式等身份验证方案在智能手机中被广泛使用。发现为了验证这个研究模型,未经验证的用户的步态与所有者的步态同时进行了训练和测试。此外,如果步态匹配,智能手机会自动解锁;最后,通过获得更好的精度和更低的误差率,证明了所提出的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1