Evaluation of Corrosion Inhibition of Plasma Sprayed FsHA/YSZ Coating on β-Titanium (Ti-13Nb-13Zr) Alloy Using Electrochemical Techniques

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2022-08-19 DOI:10.4028/p-6b2uc3
F. Anene, C. Jaafar, I. Zainol, A. H. Mohamed Ariff, S. Mohd Tahir
{"title":"Evaluation of Corrosion Inhibition of Plasma Sprayed FsHA/YSZ Coating on β-Titanium (Ti-13Nb-13Zr) Alloy Using Electrochemical Techniques","authors":"F. Anene, C. Jaafar, I. Zainol, A. H. Mohamed Ariff, S. Mohd Tahir","doi":"10.4028/p-6b2uc3","DOIUrl":null,"url":null,"abstract":"α + β titanium alloys especially Ti-6Al-4V alloy have dominated implant industry over the years due to their high corrosion resistance, strength, and flexibility. However, their high modulus (110GPa) compared to the human bone (18-30GPa) results in aseptic loosening of implants. Hydroxyapatite (HA) coating on Ti-6Al-4V alloys has been used to mitigate these demerits, nevertheless, more still need to be done. Hence, the present study aims at developing a natural and economical bioceramic coating on low modulus Ti-13Nb-13Zr alloy substrates using plasma spraying technique for biomedical applications. The bioceramic used was natural HA derived from fish scales (FsHA) and FsHA doped yttria stabilized zirconia at (10-20 wt.%). FsHA/YSZ powders and the coated samples were examined by XRD and SEM/EDX and the surface roughness, microhardness and corrosion resistance of the uncoated substrate and coated samples determined. The XRD pattern showed good crystalline FsHA/YSZ powders for all the compositions while the microstructure of the coatings revealed a fine splat lamellar morphology with partially melted and non-melted FsHA particles along with evenly dispersed Zr particles within the coating matrix for the FsHA/YSZ coatings. The maximum surface roughness (4.215 µm) was found with the FsHA coating while FsHA/YSZ coatings presented the highest hardness values (492.5-536.9 Hv) compared to the FsHA coating (467.8 Hv) and the uncoated substrate (385.9 Hv). Similarly, the corrosion resistance of the Ti-13Nb-13Zr alloy was significantly improved with the deposition of FsHA/YSZ bioceramic coatings.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-6b2uc3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

α + β titanium alloys especially Ti-6Al-4V alloy have dominated implant industry over the years due to their high corrosion resistance, strength, and flexibility. However, their high modulus (110GPa) compared to the human bone (18-30GPa) results in aseptic loosening of implants. Hydroxyapatite (HA) coating on Ti-6Al-4V alloys has been used to mitigate these demerits, nevertheless, more still need to be done. Hence, the present study aims at developing a natural and economical bioceramic coating on low modulus Ti-13Nb-13Zr alloy substrates using plasma spraying technique for biomedical applications. The bioceramic used was natural HA derived from fish scales (FsHA) and FsHA doped yttria stabilized zirconia at (10-20 wt.%). FsHA/YSZ powders and the coated samples were examined by XRD and SEM/EDX and the surface roughness, microhardness and corrosion resistance of the uncoated substrate and coated samples determined. The XRD pattern showed good crystalline FsHA/YSZ powders for all the compositions while the microstructure of the coatings revealed a fine splat lamellar morphology with partially melted and non-melted FsHA particles along with evenly dispersed Zr particles within the coating matrix for the FsHA/YSZ coatings. The maximum surface roughness (4.215 µm) was found with the FsHA coating while FsHA/YSZ coatings presented the highest hardness values (492.5-536.9 Hv) compared to the FsHA coating (467.8 Hv) and the uncoated substrate (385.9 Hv). Similarly, the corrosion resistance of the Ti-13Nb-13Zr alloy was significantly improved with the deposition of FsHA/YSZ bioceramic coatings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体喷涂FsHA/YSZ涂层对β-钛(Ti-13Nb-13Zr)合金缓蚀性能的电化学评价
α+β钛合金,特别是Ti-6Al-4V合金,由于其高耐腐蚀性、强度和灵活性,多年来一直主导着植入物行业。然而,与人骨(18-30GPa)相比,它们的高模量(110GPa)导致植入物的无菌性松动。在Ti-6Al-4V合金上涂覆羟基磷灰石(HA)已经被用来减轻这些缺点,然而,还需要做更多的工作。因此,本研究旨在利用等离子体喷涂技术在低模量Ti-13Nb-13Zr合金基底上开发一种天然、经济的生物陶瓷涂层,用于生物医学应用。所用的生物陶瓷是由鱼鳞衍生的天然HA(FsHA)和FsHA掺杂的氧化钇稳定的氧化锆(10-20wt.%)。通过XRD和SEM/EDX对FsHA/YSZ粉末和涂层样品进行了检测,并测定了未涂层基底和涂层样品的表面粗糙度、显微硬度和耐腐蚀性。XRD图谱显示所有组合物都具有良好的晶体FsHA/YSZ粉末,而涂层的微观结构显示出精细的飞溅片状形态,FsHA/YSZ涂层的涂层基体中有部分熔化和未熔化的FsHA颗粒以及均匀分散的Zr颗粒。FsHA涂层的最大表面粗糙度(4.215µm),而与FsHA涂料(467.8 Hv)和未涂覆基材(385.9 Hv)相比,FsHA/YSZ涂层的硬度值最高(492.5-536.9 Hv)。类似地,随着FsHA/YSZ生物陶瓷涂层的沉积,Ti-13Nb-13Zr合金的耐腐蚀性显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Preparation and Characterization of PMMA/SrBHA Composites for Bone Replacement Applications Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 65 Characterization of Polycaprolactone/Eucomis autumnalis Cellulose Composite: Structural, Thermal, and Mechanical Analysis Bio-Convective Flow of Micropolar Nanofluids over an Inclined Permeable Stretching Surface with Radiative Activation Energy Improving Chitosan/PVA Electrospun Nanofibers Antimicrobial Efficacy with Methylene Blue for Effective E. Coli Inhibition Using Photodynamic Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1