Špiro Ivošević, N. Kovač, N. Momčilović, G. Vukelić
{"title":"ANALYSIS OF CORROSION DEPTH PERCENTAGE ON THE INNER BOTTOM PLATES OF AGING BULK CARRIERS WITH AN AIM TO OPTIMIZE CORROSION MARGIN","authors":"Špiro Ivošević, N. Kovač, N. Momčilović, G. Vukelić","doi":"10.21278/brod72306","DOIUrl":null,"url":null,"abstract":"To ensure the better structural integrity and maximum safety of bulk carriers in the ship design phase, an appropriate corrosion margin is introduced by the classification societies, which should enable the exploitation of ships during the projected 25-year life cycle. The new Common Structural Rules introduce even higher corrosion margin value to ensure the structural integrity of the ship. This directly affects the increase in hull weight and thus the need for more total installed power and higher fuel consumption. Higher fuel consumption results in increased emissions which directly affects environmental pollution. For these reasons, efforts are being made to introduce alternative energy sources, cleaner fuel, ship weight reduction, and the overall economic efficiency of ships. Therefore, using experimental data collected on aging bulk carriers, the paper explores the corrosion margin reduction potential considering its impact on hull weight. Assuming that the corrosive processes occur after four years of operation, a linear model that describes the percentage of plate wear as a function of the as build-in the thickness of inner bottom plates (IBP) of fuel oil tanks (FOT) located on the double bottom of aging bulk carriers, is analyzed. Over the course of 25 years, the IBP segment was monitored on 36 different ships surveys. In this way, 520 input data describing the depth of corrosion were formed. At the same time, records were kept on the mean thickness of the original metal plate, which enabled systematization of the empirical database and grouping of measured values by intervals of original plate thicknesses, and simple conversion of corrosion depth into adequate percentage values. Depth corrosion percentages were represented by standard linear models known in the literature. Based on this analysis, representative numerical and graphical results were obtained. Conclusions from the paper can assist to optimize corrosion margin and the energy efficiency of future vessels.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod72306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 4
Abstract
To ensure the better structural integrity and maximum safety of bulk carriers in the ship design phase, an appropriate corrosion margin is introduced by the classification societies, which should enable the exploitation of ships during the projected 25-year life cycle. The new Common Structural Rules introduce even higher corrosion margin value to ensure the structural integrity of the ship. This directly affects the increase in hull weight and thus the need for more total installed power and higher fuel consumption. Higher fuel consumption results in increased emissions which directly affects environmental pollution. For these reasons, efforts are being made to introduce alternative energy sources, cleaner fuel, ship weight reduction, and the overall economic efficiency of ships. Therefore, using experimental data collected on aging bulk carriers, the paper explores the corrosion margin reduction potential considering its impact on hull weight. Assuming that the corrosive processes occur after four years of operation, a linear model that describes the percentage of plate wear as a function of the as build-in the thickness of inner bottom plates (IBP) of fuel oil tanks (FOT) located on the double bottom of aging bulk carriers, is analyzed. Over the course of 25 years, the IBP segment was monitored on 36 different ships surveys. In this way, 520 input data describing the depth of corrosion were formed. At the same time, records were kept on the mean thickness of the original metal plate, which enabled systematization of the empirical database and grouping of measured values by intervals of original plate thicknesses, and simple conversion of corrosion depth into adequate percentage values. Depth corrosion percentages were represented by standard linear models known in the literature. Based on this analysis, representative numerical and graphical results were obtained. Conclusions from the paper can assist to optimize corrosion margin and the energy efficiency of future vessels.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.