Constraints on parameter choices for successful time-series prediction with echo-state networks

IF 4.6 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2022-11-10 DOI:10.1088/2632-2153/aca1f6
L. Storm, K. Gustavsson, B. Mehlig
{"title":"Constraints on parameter choices for successful time-series prediction with echo-state networks","authors":"L. Storm, K. Gustavsson, B. Mehlig","doi":"10.1088/2632-2153/aca1f6","DOIUrl":null,"url":null,"abstract":"Echo-state networks are simple models of discrete dynamical systems driven by a time series. By selecting network parameters such that the dynamics of the network is contractive, characterized by a negative maximal Lyapunov exponent, the network may synchronize with the driving signal. Exploiting this synchronization, the echo-state network may be trained to autonomously reproduce the input dynamics, enabling time-series prediction. However, while synchronization is a necessary condition for prediction, it is not sufficient. Here, we study what other conditions are necessary for successful time-series prediction. We identify two key parameters for prediction performance, and conduct a parameter sweep to find regions where prediction is successful. These regions differ significantly depending on whether full or partial phase space information about the input is provided to the network during training. We explain how these regions emerge.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/aca1f6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Echo-state networks are simple models of discrete dynamical systems driven by a time series. By selecting network parameters such that the dynamics of the network is contractive, characterized by a negative maximal Lyapunov exponent, the network may synchronize with the driving signal. Exploiting this synchronization, the echo-state network may be trained to autonomously reproduce the input dynamics, enabling time-series prediction. However, while synchronization is a necessary condition for prediction, it is not sufficient. Here, we study what other conditions are necessary for successful time-series prediction. We identify two key parameters for prediction performance, and conduct a parameter sweep to find regions where prediction is successful. These regions differ significantly depending on whether full or partial phase space information about the input is provided to the network during training. We explain how these regions emerge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回声状态网络成功时间序列预测参数选择的约束
回声状态网络是由时间序列驱动的离散动力系统的简单模型。通过选择网络参数,使网络的动力学是收缩的,其特征是负极大李雅普诺夫指数,网络可以与驱动信号同步。利用这种同步,可以训练回声状态网络来自主地再现输入动态,从而实现时间序列预测。然而,虽然同步是预测的必要条件,但它不是充分条件。在这里,我们研究了成功的时间序列预测所必需的其他条件。我们确定了预测性能的两个关键参数,并进行参数扫描以找到预测成功的区域。这些区域的差异很大,这取决于在训练期间是否向网络提供了有关输入的全部或部分相空间信息。我们解释这些区域是如何出现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Generative diffusion model surrogates for mechanistic agent-based biological models. Depthwise-Dilated Convolutional Adapters for Medical Object Tracking and Segmentation Using the Segment Anything Model 2. Mamba time series forecasting with uncertainty quantification. Beyond Euclid: an illustrated guide to modern machine learning with geometric, topological, and algebraic structures. 32 examples of LLM applications in materials science and chemistry: towards automation, assistants, agents, and accelerated scientific discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1